
1

Hardware

2

A Washing machine

A simple Embedded System only work on a set of rules:

Step 1: Rinse in fresh water mixed with detergent

Step 2: Wash by spinning the motor

Step 3: Rinse in fresh water after draining dirty water

Step 4: Second spin with fresh water

Step 5: Draining out the water completely

Step 6: Dry spin

Step 7: Sound the alarm to signal the wash cycle is
complete

In case of an interruption, stop and continue execute only
the remaining part of the program

3

Three major components of

Embedded Systems

• Hardware

– Microprocessor

• Operating System

• Applications

4

What is actually being used in

New Embedded Designs?

• What Types of Processors are used?

• What Operating Systems are used?

• What Programming Languages are used?

• Will examine data from a 2006 Market Survey of

design engineers by EETimes and Embedded

Systems Design Magazine

5

Processor Bit Size Used in

New Embedded Designs

0.00% 10.00% 20.00% 30.00% 40.00% 50.00% 60.00%

4-bit

8-bit

16-bit

32-bit

64-bit

Data was derived from EETimes and Embedded Systems Design Magazine 2006 Embedded Market Survey

6

Processor Architectures Widely Used

in New Embedded Designs

• ARM

• X86

• MIPS

• Xscale (ARM)

• Renesas SuperH

• PowerPC

7

32 & 64-bit Annual Processor Sales

Volume

0.00% 5.00% 10.00% 15.00% 20.00% 25.00% 30.00% 35.00% 40.00%

PowerPC

SuperH

MIPS

X86

ARM

Processor Sales Volume

Based on 2002 sales data

8

Processor Selection Issues

• Software Support

– OS, Compilers, Debug Tools, Applications

• Price

• Performance

• Power

– Battery Life (MIPS/Watt), Cooling (Fan?)

• Desktop PC 100 W vs. Battery power 200 mw

• Availability

– Long term availability, Multiple Vendors?

9

ARM Processors
• 32-bit RISC low-power design from an English IP

company, ARM ltd (Advanced RISC Machines)

http://www.arm.com/

• ARM’s processor designs are licensed to over 100 chip

manufacturers. ARM does not make chips.

• Used in many devices such as Cell phones, iPod Nano,

Cameras, Handheld Games, HDTVs, and Set-Top boxes.

80% of ARM processors are in phones

• Good performance/power makes it a very popular choice

in low power and battery operated devices.

• ARM’s thumb instruction subset is coded into 16-bits and

decompressed on-the-fly to full 32-bit instructions. Can

switch from 16-bit to 32-bit instructions on the sub-routine

level.

http://www.arm.com/

10

X86 (IA-32) Processors

• Based on the Intel X86 CISC instruction set used in

processors in PCs since the mid 1980s

• Low cost due to widespread use in PC technology

• Processors and support chips are available from multiple

vendors

• A wide processor performance range is available

• Most X86 processors for desktop PCs have been

optimized for performance and not low power

• The major desktop PC processor vendors (Intel, AMD)

are moving on to newer designs and 64-bit architectures –

but other manufacturers are making X86 processors for

embedded devices

11

Number of Processors Used in

New Embedded Designs

Data was derived from EETimes and Embedded Systems Design Magazine 2006 Embedded Market Survey

0.00% 10.00% 20.00% 30.00% 40.00% 50.00% 60.00%

More Than 5

3-5 Processors

2 Processors

1 Processor

12

Why Operating System(OS)?

13

Product: TMIO

ConnectIO Oven

OS: Windows CE

Also refrigerates food

before cooking and is

controlled over the

internet or via phone

14

Internet Oven: Example Tasks

•Control Oven Temperature (when cooking)

•Control Refrigeration Temperature (when cooling)

•Check for Keypad input and handle input

•Check cooking time to turn oven on/off (timed cooking)

•Update time and temperature display on front panel

•Check for Internet communications and handle messages

•Check for Phone communications and handle messages

15

Internet Oven: Tasks

• How would all of these tasks be

prioritized and scheduled?

• Is synchronization needed anywhere?

• What networking and communications

support is needed?

• Would an Operating System help?

16

Why have an OS in an embedded device?

• Support for multitasking, scheduling, and synchronization

• Support for a wide range of I/O devices

• Support for file systems

• Scheduling and buffering of I/O operations

• Support for networking

• Memory management

• Support for graphics displays

• Security and Power Management

17

Example:

 A recent cell phone design contained over
five million lines of code!

• Few, if any projects will have the time and funding
needed to develop all of this code on their own!

• Typical Embedded OS license fees are a few dollars
per device – less than a desktop OS

• Some very simple low-end devices might not need an
OS – but new devices are getting more complex

Why have an OS in an embedded device?

18

Use of Real-Time OS Kernels

in New Embedded Designs

0.00% 5.00% 10.00% 15.00% 20.00% 25.00% 30.00% 35.00% 40.00% 45.00%

Open Source

Internally Developed

None

Commercial OS

Data was derived from EETimes and Embedded Systems Design Magazine 2006 Embedded Market Survey

19

Open Source OS?

• “Free” OS can cost more for product development

• More time to develop kernel, device drivers & product can

increase labor cost more than the commercial OS license

fees saved

• Some other licenses still required for many devices in

addition to free OS (real-time kernel, browser, encoders &

decoders, encryption, media player)

• Open source license model may require that you publish

your device’s source code

• Some Studies even show a recent decline in Open Source

OS use:

– http://www.embedded-forecast.com/EMFTCD2003v3.pdf
– http://www.embedded.com/showArticle.jhtml?articleID=187203732

http://www.embedded-forecast.com/EMFTCD2003v3.pdf
http://www.embedded-forecast.com/EMFTCD2003v3.pdf
http://www.embedded-forecast.com/EMFTCD2003v3.pdf
http://www.embedded.com/showArticle.jhtml?articleID=187203732

20

Commercial Operating Systems

used in New Embedded Designs

0.00% 5.00% 10.00% 15.00% 20.00% 25.00% 30.00%

Others

Palm

Green Hills

Symbian

Wind River

Microsoft Emb.

Data was derived from EETimes and Embedded Systems Design Magazine 2006 Embedded Market Survey

21

Applications

• What language should we use?

• What’s about the support?

22

Programming Languages Used in

New Embedded Designs

0.00% 10.00% 20.00% 30.00% 40.00% 50.00% 60.00% 70.00%

Others

Assembly

Java

C#

C++

C

Data was derived from EETimes and Embedded Systems Design Magazine 2006 Embedded Market Survey

23

Typical Software Development Tools

Used for Embedded Applications

•Compiler - compile C/C++ and in-line assembly language

•Linker – links compiled application code, OS, and runtime

libraries

•Memory Image tools – tools to place code in non-volatile

memory at a given physical memory address

•Debugger – tool to debug OS and applications programs

•Loader – load OS at power on and applications. Also a tool

to download new code from the development system is

typically provided.

24

Abstraction

Compiler

 …

 lw r2, mem[r7]
 add r3, r4, r2
 st r3, mem[r8]

High Level

Language

 main() {
 int i,b,c,a[10];
 for (i=0; i<10; i++)…
 a[2] = b + c*i;
}

Assembler

ISA

Machine code

Linker

Other Library

Complete

Machine code

Memory Image

tool

25

Embedded processor technology

General purpose

Processor (GP)
Application Specific

processor

Single purpose

processor

26

Implementation on different system

General purpose

Processor (GPP)
Application Specific

Processor (ASP)

Single purpose processor

(SPP)

27

Example of different systems

• General Purpose Processor (GPP)

– Microprocessor

• Application Specific Processor (ASP/ASIP)

– Microcontroller

– Embedded microprocessor

– Digital Signal Processor (DSP)

• Single Purpose Processor (SPP)

– Controllers

– Co-processor

28

Microprocessor vs. microcontroller

• Microprocessors generally require external

components such as memory, ram, and

input/output

• Microcontrollers incorporate program

memory, ram, and input/output resources

internal to the chip

29

Intel wafer

http://www.premiers2.com/images/Wafer_Bumping.jpg

30

IC chip

31

IC technology

• Full-custom/VLSI design
 New mask design, excellent performance

• Semi-custom ASIC
Masks for transistor and gate levels are already built.

Main task is to connect gates together. Most popular IC
technology

• Programmable Logic Device (PLD) such as
FPGA or PLA
 Programmable, good for rapid prototyping

32

Processor technology mapping with

IC technology

33

Co-design ladder

Performance

What is Performance?
• Which airplane has the best performance?

0 100 200 300 400 500

Douglas

DC-8-50

BAC/Sud

Concorde

Boeing 747

Boeing 777

Passenger Capacity

0 2000 4000 6000 8000 10000

Douglas DC-

8-50

BAC/Sud

Concorde

Boeing 747

Boeing 777

Cruising Range (miles)

0 500 1000 1500

Douglas

DC-8-50

BAC/Sud

Concorde

Boeing 747

Boeing 777

Cruising Speed (mph)

0 100000 200000 300000 400000

Douglas DC-

8-50

BAC/Sud

Concorde

Boeing 747

Boeing 777

Passengers x mph

Throughput vs. Response Time

• Response time (execution time) – the time between the

start and the completion of a task

– Important to individual users

• Throughput (bandwidth) – the total amount of work done

in a given time

– Important to data center managers

 Will need different performance metrics as well as a
different set of applications to benchmark embedded
and desktop computers, which are more focused on
response time, versus servers, which are more
focused on throughput

Response Time Matters

Justin Rattner’s ISCA’08 Keynote (VP and CTO of Intel)

Defining (Speed) Performance

• To maximize performance, need to minimize

execution time

performanceX = 1 / execution_timeX

If X is n times faster than Y, then

performanceX execution_timeY
 -------------------- = --------------------- = n

performanceY execution_timeX

 Decreasing response time almost always improves
throughput

Relative Performance Example

• If computer A runs a program in 10 seconds and

computer B runs the same program in 15

seconds, how much faster is A than B?

We know that A is n times faster than B if

performanceA execution_timeB
 -------------------- = --------------------- = n

performanceB execution_timeA

15
 ------ = 1.5

10

The performance ratio is

So A is 1.5 times faster than B

Performance Factors
• CPU execution time (CPU time) – time the CPU spends

working on a task

– Does not include time waiting for I/O or running other

programs

CPU execution time = # CPU clock x clock cycle time

 for a program for a program

CPU execution time # CPU clock cycles for a program

 for a program clock rate
 = ---

 Can improve performance by reducing either the
length of the clock cycle or the number of clock
cycles required for a program

 or

Review: Machine Clock Rate

• Clock rate (clock cycles per second in MHz or

GHz) is inverse of clock cycle time (clock period)

CC = 1 / CR

one clock period

 10 nsec clock cycle =>

 5 nsec clock cycle =>

 2 nsec clock cycle =>

 1 nsec (10-9) clock cycle =>

 500 psec clock cycle =>

 250 psec clock cycle =>

 200 psec clock cycle =>

100 MHz clock rate

200 MHz clock rate

500 MHz clock rate

1 GHz (109) clock rate

2 GHz clock rate

4 GHz clock rate

5 GHz clock rate

Improving Performance Example

• A program runs on computer A with a 2 GHz clock in 10

seconds. What clock rate must computer B run at to run

this program in 6 seconds? Unfortunately, to accomplish

this, computer B will require 1.2 times as many clock

cycles as computer A to run the program.

 CPU timeA CPU clock cyclesA

 clock rateA
 = -------------------------------

Total CPU clock cyclesA = 10 sec x 2 x 109 cycles/sec
 = 20 x 109 cycles

 CPU timeB 1.2 x 20 x 109 cycles

 clock rateB
 = -------------------------------

 clock rateB 1.2 x 20 x 109 cycles

 6 seconds
 = ------------------------------- = 4 GHz

Clock Cycles per Instruction
• Not all instructions take the same amount of time to execute

– One way to think about execution time is that it equals the

number of instructions executed multiplied by the average time

per instruction

 Clock cycles per instruction (CPI) – the average
number of clock cycles each instruction takes to
execute

l A way to compare two different implementations of the
same ISA

CPU clock cycles # Instructions Average clock
cycles

 for a program for a program per instruction

 = x

CPI for this instruction class

A B C

CPI 1 2 3

Using the Performance Equation
• Computers A and B implement the same ISA. Computer

A has a clock cycle time of 250 ps and an effective CPI of

2.0 for some program and computer B has a clock cycle

time of 500 ps and an effective CPI of 1.2 for the same

program. Which computer is faster and by how much?
Each computer executes the same number of

instructions, I, so

CPU timeA = I x 2.0 x 250 ps = 500 x I ps

CPU timeB = I x 1.2 x 500 ps = 600 x I ps

Clearly, A is faster … by the ratio of execution times

performanceA execution_timeB 600 x I ps
 ------------------- = --------------------- = ---------------- = 1.2

performanceB execution_timeA 500 x I ps

Effective (Average) CPI

• Computing the overall effective CPI is done by

looking at the different types of instructions and

their individual cycle counts and averaging

Overall effective CPI = (CPIi x ICi)
i = 1

n

l Where ICi is the count (percentage) of the number of
instructions of class i executed

l CPIi is the (average) number of clock cycles per instruction
for that instruction class

l n is the number of instruction classes

 The overall effective CPI varies by instruction mix – a
measure of the dynamic frequency of instructions
across one or many programs

THE Performance Equation
• Our basic performance equation is then

 CPU time = Instruction_count x CPI x clock_cycle

 Instruction_count x CPI

 clock_rate
 CPU time = ---

 or

 These equations separate the three key factors that
affect performance

l Can measure the CPU execution time by running the
program

l The clock rate is usually given

l Can measure overall instruction count by using profilers/
simulators without knowing all of the implementation details

l CPI varies by instruction type and ISA implementation for
which we must know the implementation details

Instruction Count

What is the instruction count of this program?

 mov r2, #0

Label1: add r1, r2, r3

 add r4, r5, r6

 mul r7, r1, r2

 add r2, r2, 1

 add r5, r5, 4

 bne r2, 10, Label1

 halt

Determinates of CPU Performance
 CPU time = Instruction_count x CPI x clock_cycle

Instruction_

count

CPI clock_cycle

Algorithm

Programming

language

Compiler

ISA

Core

organization

Technology X

X X

X X

X X

X

X

X

X

X

A Simple Example

• How much faster would the machine be if a better data

cache reduced the average load time to 2 cycles?

• How does this compare with using branch prediction to

shave a cycle off the branch time?

• What if two ALU instructions could be executed at once?

Op Freq CPIi Freq x CPIi

ALU 50% 1

Load 20% 5

Store 10% 3

Branch 20% 2

 =

.5

1.0

.3

.4

2.2

CPU time new = 1.6 x IC x CC so 2.2/1.6 means 37.5% faster

1.6

.5

 .4

.3

.4

.5

1.0

.3

.2

2.0

CPU time new = 2.0 x IC x CC so 2.2/2.0 means 10% faster

.25

1.0

.3

.4

1.95

CPU time new = 1.95 x IC x CC so 2.2/1.95 means 12.8% faster

CPU Performance

• Two common measures

– Latency (how long to do X)
• Also called response time and execution time

– Throughput (how often can it do X)

• Example of car assembly line

– Takes 6 hours to make a car
(latency is 6 hours)

– A car leaves every 30 minutes
(throughput is 2 cars per hour)

– Overlap results in Throughput > 1/Latency

Measuring Performance

• Peak (MIPS, MFLOPS)
– Often not useful

• unachievable in practice, or unsustainable

• Benchmarks
– Real applications and application suites

• E.g. SPEC95, SPEC CPU2000, TPC-C, TPC-H

– Kernels
• “Representative” parts of real applications

• Easier and quicker to set up and run

• Often not really representative of the entire app

– Toy programs, synthetic benchmarks, etc.
• Not very useful for reporting

• Sometimes used to test/stress specific functions/features

CPU Performance Equation (1)

 timecycleClock CyclesClock CPU timeCPU

 timecycleClock nInstructioPer CyclesCount n Instructio timeCPU

CycleClock

Seconds

nInstructio

CyclesClock

Program

nsInstructio

Program

Seconds
 timeCPU

Hardware

Technology,

Organization

Organization

, ISA

ISA,

Compiler

Technology

A.K.A. The “iron law” of performance

Car Analogy

• Need to drive from AIT to Victory

Monument

– “Clock Speed” = 3500 RPM

– “CPI” = 0.994 rotations/ft or

1.006 ft/rot

– “Insts” = 25 miles

CycleClock

Seconds

nInstructio

CyclesClock

Program

nsInstructio

Program

Seconds
 timeCPU

25 miles
1 rotation

1.006 feet

1 minute

3500 rotations

= 0.625 hours or 37.5 minutes

CPU Version

• Program takes 33 billion instructions to run

• CPU processes insts at 2 cycles per inst

• Clock speed of 3GHz

CycleClock

Seconds

nInstructio

CyclesClock

Program

nsInstructio

Program

Seconds
 timeCPU

= 22 seconds

Sometimes clock cycle time given

instead (ex. cycle = 333 ps)

IPC sometimes used instead of CPI

CPU Performance Equation (2)

 timecycleClock CyclesClock CPU timeCPU

 timecycleClock CPI IC timeCPU
n

1i

ii

For each kind

of instruction

How many

instructions of this

kind are there in the

program

How many cycles it

takes to execute an

instruction of this

kind

Car Analogy Again
Gear Distance

(miles)

Feet/

Rotation

1st 1.0 0.5

2nd 3.5 0.7

3rd 1.2 1.0

4th 1.8 1.2

 timecycleClock CPI IC timeCPU
n

1i

ii

1.0 miles
1 rotation

0.5 feet

3.5 miles
1 rotation

0.7 feet

1.2 miles
1 rotation

1.0 feet

1.8 miles
1 rotation

1.2 feet

10,560 rotations

26,400 rotations

6,336 rotations

7,920 rotations

 = 51,216 rotations

14.63 minutes

divide by

3500 RPM

CPU Version
Instruction

Type

Frequency CPI

Integer 40% 1.0

Branch 20% 4.0

Load 20% 2.0

Store 20% 3.0

 timecycleClock CPI IC timeCPU
n

1i

ii

Total Insts = 50B, Clock speed = 2 GHz

What is CPU time?

Comparing Performance

• “X is n times faster than Y”

• “Throughput of X is n times that of Y”

n
timeExecution

timeExecution

X

Y

n
unit timeper Tasks

unit timeper Tasks

Y

X

If Only it Were That Simple

• “X is n times faster than Y on A”

• But what about different applications

(or even parts of the same application)

– X is 10 times faster than Y on A, and 1.5

times on B, but Y is 2 times faster than X on

C, and 3 times on D, and…

n
X machineon A app of timeExecution

Y machineon A app of timeExecution

So does X have better

performance than Y?

Which would you buy?

Workloads and Benchmarks
• Benchmarks – a set of programs that form a “workload”

specifically chosen to measure performance

• SPEC (System Performance Evaluation Cooperative)

creates standard sets of benchmarks starting with

SPEC89. The latest is SPEC CPU2006 which consists

of 12 integer benchmarks (CINT2006) and 17 floating-

point benchmarks (CFP2006).

www.spec.org

• There are also benchmark collections for power

workloads (SPECpower_ssj2008), for mail workloads

(SPECmail2008), for multimedia workloads

(mediabench), …

http://www.spec.org/

Why SPEC?

SPEC CINT2006 on Barcelona (CC = 0.4 x 10-9)

Name ICx109 CPI ExTime RefTime SPEC

ratio

perl 2,1118 0.75 637 9,770 15.3

bzip2 2,389 0.85 817 9,650 11.8

gcc 1,050 1.72 724 8,050 11.1

mcf 336 10.00 1,345 9,120 6.8

go 1,658 1.09 721 10,490 14.6

hmmer 2,783 0.80 890 9,330 10.5

sjeng 2,176 0.96 837 12,100 14.5

libquantum 1,623 1.61 1,047 20,720 19.8

h264avc 3,102 0.80 993 22,130 22.3

omnetpp 587 2.94 690 6,250 9.1

astar 1,082 1.79 773 7,020 9.1

xalancbmk 1,058 2.70 1,143 6,900 6.0

Geometric Mean 11.7

TPC Benchmarks

• Measure transaction-processing

throughput

• Benchmarks for different scenarios

– TPC-C: warehouses and sales transactions

– TPC-H: ad-hoc decision support

– TPC-W: web-based business transactions

• Difficult to set up and run on a simulator

– Requires full OS support, a working DBMS

– Long simulations to get stable results

What’s about Embedded System bench?

Mibench: auto,consumer,office,network,security,
telcomm applications

EEMBC Coremark: Autobench, Consumerbench,
Energybench

ParMibench: Multi-processor based embedded
systems

mobilemark: laptop computing including document
reader, flash, movie player

Summarizing Performance

• Arithmetic mean

– Average execution time

– Gives more weight to longer-running

programs

• Weighted arithmetic mean

– More important programs can be emphasized

– But what do we use as weights?

– Different weight will make different machines

look better (see Figure 1.16)

Questions?

72

