
1

Definition of Hardware

The part of a system that can be kicked

2

Basic Microarchitecture and

Embedded processors in the market

3

The Acronyms: CISC vs. RISC

RISC Reduced Instruction Set

Computers

versus

CISC Complex Instruction Set

Computers

4

From CISC to RISC

• Why CISC?

– Memory are expensive
and slow back then

– Cramming more
functions into one
instruction

– Using microcode ROM
(μROM) for “complex”
operations

• Justification for RISC

– Complex apps are
mostly composed of
simple assignments

– RAM speed catching
up

– Compiler (human)
getting smarter

– Frequency shorter
pipe stages

CISC RISC
Variable length instructions Fixed-length instructions

Abundant instructions and
addressing modes

Fewer instructions and
addressing modes

Longer decoding Easier decoding

Mem-to-mem operations Load/store architecture

Use on-core microcode No microinstructions,
directly executed by HW logic

Less pipelineability Better pipelineability

Closer semantic gap (shift
complexity to microcode)

Needs smart compilers

IBM 360, DEC VAX, Intel
IA32, Mot 68030

IBM 801, IBM RS6000,
MIPS, Sun Sparc

5

CISC vs. RISC (1970s – 80s)

Source: Andy Tanenbaum’s Structured Computer Organization

IBM

370/168

VAX

11/780

Xerox

Dorado

IBM

801

Berkeley

RISC1

Stanford

MIPS

Year 1973 1978 1978 1980 1981 1983

instructions 208 303 270 120 39 55

Microcode 54KB 61KB 17KB 0 0 0

Instruction

size

2 to 6 B 2 to 57 B 1 to 3 B 4B 4B 4B

Execution

model

Reg-reg

Reg-mem

Mem-mem

Reg-reg

Reg-mem

Mem-mem

Stack Reg-reg Reg-reg Reg-reg

CISC RISC

6

RISC Views

• From processor architect perspective

– Simpler decoding and pipelining

– More scalable

– Interlock either provided by hardware of by

compiler/scheduler

• From compiler perspective

– A large “architecture register file” to manipulate

• Due to free-up space from microcode ROM

• How? e.g. Register windows or Register Stack Engine (RSE in

Itanium)

– Performance heavily rely on static code scheduling

• Key: finding parallelism

7

CISC Camp Strikes Back [Colwell et al. ‘85]

• ”Instruction Set and Beyond: Computers, Complexity and

Controversy” in IEEE Computer, Sept. 1985.

• RISC lessons are not incompatible or mutually exclusive

– Large register file (register windows) is not a patent of

RISCs

• Intel 432 study as an example

– Decoding could be masked by execution

– CISCy ISA plays no culprit of procedure call overheads

• Moore’s Law will narrow the gap

• Compiler costs will dominate

8

Our Implementation

• An edge triggered methodology

• Typical execution:

– read contents of some state elements,

– send values through some combinational logic

– write results to one or more state elements

Clock cycle

State

element

1

Combinational logic

State

element

2

9

• Built using D flip-flops

Register File

M

u

x

Register 0

Register 1

Register n – 1

Register n

M

u

x
Read data 1

Read data 2

Read register

number 1

Read register

number 2

Read register
number 1 Read

data 1

Read
data 2

Read register
number 2

Register file
Write
register

Write
data Write

10

Register File

• Note: we still use the real clock to determine when to

write

n-to-1

decoder

Register 0

Register 1

Register n – 1

C

C

D

D

Register n

C

C

D

D

Register number

Write

Register data

0

1

n – 1

n

11

Simple Implementation

• Include the functional units we need for each instruction

PC

Instruction

memory

Instruction
address

Instruction

a. Instruction memory b. Program counter

Add Sum

c. Adder

16 32
Sign

extend

b. Sign-extension unit

MemRead

MemWrite

Data

memory
Write
data

Read
data

a. Data memory unit

Address

A L U c o n t r o l

R e g W r i t e

R e g i s t e r s
W r i t e
r e g i s t e r

R e a d
d a t a 1

R e a d
d a t a 2

R e a d
r e g i s t e r 1

R e a d
r e g i s t e r 2

W r i t e
d a t a

A L U
r e s u l t

A L U

D a t a

D a t a

R e g i s t e r

n u m b e r s

a . R e g i s t e r s b . A L U

Z e r o
5

5

5 3

12

Building the Datapath
• Use multiplexers to stitch them together

MemtoReg

MemRead

MemWrite

ALUOp

ALUSrc

RegDst

PC

Instruction
memory

Read
address

Instruction
[31– 0]

Instruction [20– 16]

Instruction [25– 21]

Add

Instruction [5– 0]

RegWrite

4

16 32Instruction [15– 0]

0

Registers

Write
register

Write
data

Write
data

Read
data 1

Read
data 2

Read
register 1

Read
register 2

Sign
extend

ALU
result

Zero

Data
memory

Address Read
data

M
u
x

1

0

M
u
x

1

0

M
u
x

1

0

M
u
x

1

Instruction [15– 11]

ALU
control

Shift

left 2

PCSrc

ALU

Add
ALU

result

13

Basic Architecture

Instruction

memory

Address

4

32

0

Add
Add

result

Shift

left 2

Instruction

M
u
x

0

1

Add

PC

0
Write
data

M
u
x

1

Registers

Read
data 1

Read
data 2

Read
register 1

Read
register 2

16
Sign

extend

Write
register

Write
data

Read
data

Address

Data

memory
1

ALU
result

M
u
x

ALU

Zero

IF: Instruction fetch ID: Instruction decode/

register file read

EX: Execute/

address calculation

MEM: Memory access WB: Write back

14

Instruction Fetch

Instruction

memory

Address

4

32

0

Add
Add

result

Shift

left 2

Instruction

M
u
x

0

1

Add

PC

0
Write
data

M
u
x

1

Registers

Read
data 1

Read
data 2

Read
register 1

Read
register 2

16
Sign

extend

Write
register

Write
data

Read
data

Address

Data

memory
1

ALU
result

M
u
x

ALU

Zero

IF: Instruction fetch ID: Instruction decode/

register file read

EX: Execute/

address calculation

MEM: Memory access WB: Write back

PC = 0

0:0x02910210

4:0x04121002

8:0x02410110

…

15

Instruction Decoder

Instruction

memory

Address

4

32

0

Add
Add

result

Shift

left 2

Instruction

M
u
x

0

1

Add

PC

0
Write
data

M
u
x

1

Registers

Read
data 1

Read
data 2

Read
register 1

Read
register 2

16
Sign

extend

Write
register

Write
data

Read
data

Address

Data

memory
1

ALU
result

M
u
x

ALU

Zero

IF: Instruction fetch ID: Instruction decode/

register file read

EX: Execute/

address calculation

MEM: Memory access WB: Write back

PC = 0

0:0x02910210

4:0x04121002

8:0x02410110

…

0
x
0
2
9
1
0
2
1
0

add r0, r1,

r2

r0: 0

r1: 1

r2: 2

…

16

Execution

Instruction

memory

Address

4

32

0

Add
Add

result

Shift

left 2

Instruction

M
u
x

0

1

Add

PC

0
Write
data

M
u
x

1

Registers

Read
data 1

Read
data 2

Read
register 1

Read
register 2

16
Sign

extend

Write
register

Write
data

Read
data

Address

Data

memory
1

ALU
result

M
u
x

ALU

Zero

IF: Instruction fetch ID: Instruction decode/

register file read

EX: Execute/

address calculation

MEM: Memory access WB: Write back

PC = 4

0:0x02910210

4:0x04121002

8:0x02410110

…

a
d

d

r0: 0

r1: 1

r2: 2

…

1

2

3

17

Memory

Instruction

memory

Address

4

32

0

Add
Add

result

Shift

left 2

Instruction

M
u
x

0

1

Add

PC

0
Write
data

M
u
x

1

Registers

Read
data 1

Read
data 2

Read
register 1

Read
register 2

16
Sign

extend

Write
register

Write
data

Read
data

Address

Data

memory
1

ALU
result

M
u
x

ALU

Zero

IF: Instruction fetch ID: Instruction decode/

register file read

EX: Execute/

address calculation

MEM: Memory access WB: Write back

PC = 4

0:0x02910210

4:0x04121002

8:0x02410110

…

r0: 0

r1: 1

r2: 2

…

3

18

Writeback

Instruction

memory

Address

4

32

0

Add
Add

result

Shift

left 2

Instruction

M
u
x

0

1

Add

PC

0
Write
data

M
u
x

1

Registers

Read
data 1

Read
data 2

Read
register 1

Read
register 2

16
Sign

extend

Write
register

Write
data

Read
data

Address

Data

memory
1

ALU
result

M
u
x

ALU

Zero

IF: Instruction fetch ID: Instruction decode/

register file read

EX: Execute/

address calculation

MEM: Memory access WB: Write back

PC = 4

0:0x02910210

4:0x04121002

8:0x02410110

…

r0: 3

r1: 1

r2: 2

…

3

19

Instruction Fetch

Instruction

memory

Address

4

32

0

Add
Add

result

Shift

left 2

Instruction

M
u
x

0

1

Add

PC

0
Write
data

M
u
x

1

Registers

Read
data 1

Read
data 2

Read
register 1

Read
register 2

16
Sign

extend

Write
register

Write
data

Read
data

Address

Data

memory
1

ALU
result

M
u
x

ALU

Zero

IF: Instruction fetch ID: Instruction decode/

register file read

EX: Execute/

address calculation

MEM: Memory access WB: Write back

PC = 4

0:0x02910210

4:0x04121002

8:0x02410110

…

r0: 3

r1: 1

r2: 2

…

20

Instruction Decoder

Instruction

memory

Address

4

32

0

Add
Add

result

Shift

left 2

Instruction

M
u
x

0

1

Add

PC

0
Write
data

M
u
x

1

Registers

Read
data 1

Read
data 2

Read
register 1

Read
register 2

16
Sign

extend

Write
register

Write
data

Read
data

Address

Data

memory
1

ALU
result

M
u
x

ALU

Zero

IF: Instruction fetch ID: Instruction decode/

register file read

EX: Execute/

address calculation

MEM: Memory access WB: Write back

PC = 4

0:0x02910210

4:0x04121002

8:0x02410110

…

0
x
0

4
1

2
1

0
0

2

ldr r1, [r2,#2]

r0: 3

r1: 1

r2: 2

…

21

Execution

Instruction

memory

Address

4

32

0

Add
Add

result

Shift

left 2

Instruction

M
u
x

0

1

Add

PC

0
Write
data

M
u
x

1

Registers

Read
data 1

Read
data 2

Read
register 1

Read
register 2

16
Sign

extend

Write
register

Write
data

Read
data

Address

Data

memory
1

ALU
result

M
u
x

ALU

Zero

IF: Instruction fetch ID: Instruction decode/

register file read

EX: Execute/

address calculation

MEM: Memory access WB: Write back

PC = 8

0:0x02910210

4:0x04121002

8:0x02410110

…

ld
r

r0: 3

r1: 1

r2: 2

…

2

2

4

0:0x8

4:0x9

8:0xA

…

22

Memory

Instruction

memory

Address

4

32

0

Add
Add

result

Shift

left 2

Instruction

M
u
x

0

1

Add

PC

0
Write
data

M
u
x

1

Registers

Read
data 1

Read
data 2

Read
register 1

Read
register 2

16
Sign

extend

Write
register

Write
data

Read
data

Address

Data

memory
1

ALU
result

M
u
x

ALU

Zero

IF: Instruction fetch ID: Instruction decode/

register file read

EX: Execute/

address calculation

MEM: Memory access WB: Write back

PC = 8

0:0x02910210

4:0x04121002

8:0x02410110

…

r0: 3

r1: 1

r2: 2

…

9

23

Writeback

Instruction

memory

Address

4

32

0

Add
Add

result

Shift

left 2

Instruction

M
u
x

0

1

Add

PC

0
Write
data

M
u
x

1

Registers

Read
data 1

Read
data 2

Read
register 1

Read
register 2

16
Sign

extend

Write
register

Write
data

Read
data

Address

Data

memory
1

ALU
result

M
u
x

ALU

Zero

IF: Instruction fetch ID: Instruction decode/

register file read

EX: Execute/

address calculation

MEM: Memory access WB: Write back

PC = 8

0:0x02910210

4:0x04121002

8:0x02410110

…

r0: 3

r1: 9

r2: 2

…

9

24

Sequential Program Semantics

• Human expects “sequential semantics”

– Tries to issue an instruction every clock cycle

– There are dependencies, control hazards and long

latency instructions

• To achieve performance with minimum effort

– To issue more instructions every clock cycle

– E.g., an embedded system can save power by

exploiting instruction level parallelism and decrease

clock frequency

25

Pipelining

• What should be the steps to build a car

washing machine?

26

Car washing machine

Step 1: Rinse in fresh water mixed with soap

Step 2: Wash by scrubbing the car

Step 3: Blast in water jet

Step 4: Rinse in fresh water

Step 5: Wax

Step 6: Dry the car

27

Car washing machine

• Each step is independent

• To wash more cars, we can do all steps

simultaneously

28

Sequential processing

29

Pipelining example

30

Scalar Pipeline (Baseline)
• Machine Parallelism = D (= 5)

• Issue Latency (IL) = 1

• Peak IPC = 1, IPC = instruction per cycle = 1/CPI

• Pipeline depth = 5

1

2

3

4

IF DE EX MEM WB

5

Execution Cycle

In
s
tr

u
c

ti
o

n
 S

e
q

u
e

n
c

e

D

6

31

Superpipelined Machine
• 1 major cycle = M minor cycles

• Machine Parallelism = M x D (= 15) per major cycle

• Issue Latency (IL) = 1 minor cycles

• Peak IPC = 1 per minor cycle = M per baseline cycle

• Superpipelined machines are essentially deeper pipelined

• Pipeline depth = 15

Execution Cycle

In
s
tr

u
c

ti
o

n
 S

e
q

u
e

n
c

e

IF DE EX MEM WB

1

2

3

4

5

6

7

8

9

3 6 9 12 15 18

I

M

D

D

D

E

E

E

M

D

D

D

D

D

I I

I I

I

E

E E

E

E

D

E

M I I I D D D W W W

E E

M

32

Superscalar Machine
• Can issue > 1 instruction per cycle by hardware

• Replicate resources, e.g. multiple adders or multi-ported data caches

• Machine Parallelism = S x D (= 10) where S is superscalar degree

• Issue Latency (IL) = 1

• IPC = 2

Execution Cycle

In
s
tr

u
c

ti
o

n
 S

e
q

u
e

n
c

e

1

2

3

4

5

6

7

8

9

10

S

IF DE EX MEM WB

33

But, an instruction is not a car!

• Control dependency

• Data dependency

• Resource dependency

34

Instruction-Level Parallelism

(ILP)
• Fine-grained parallelism

– Multiple operations can be executed simultaneously

– Programs’ property

– Independent on hardware technology improvements

• Enabled and improved by RISC

– More ILP of a RISC over CISC does not imply a better overall
performance

– CISC can be implemented like a RISC

• A measure of inter-instruction dependency in an app

– ILP assumes a unit-cycle operation, infinite resources, perfect
frontend

– ILP != IPC

– IPC = # instructions / # cycles

– ILP is the upper bound of attainable IPC

• Limited by

– Data dependency

– Control dependency

35

c1=i1: load r2, (r12)

c2=i2: add r1, r2, 9

c3=i3: mul r2, r5, r6
a

o

ILP Example
• True dependency forces

“sequentiality”

• ILP = 3/3 = 1

• False dependency removed

• ILP = 3/2 = 1.5

i1: load r2, (r12)

i2: add r1, r2, 9

i3: mul r8, r5, r6

t

c1: load r2, (r12)

c2: add r1, r2, #9 mul r8, r5, r6

t

36

ILP, Another Example

Load R1, 8(R0)

R3 = R1 – 5

R2 = R1 * R3

Store R2 , 24(R0)

Load R1, 16(R0)

R3 = R1 – 5

R2 = R1 * R3

Store R2, 32(R0) ILP =

When only 4 registers available

37

ILP, Another Example

 ILP =

When more registers (or register renaming) available

Load R1, 8(R0)

R3 = R1 – 5

R2 = R1 * R3

Store R2, 24(R0)

Load R5, 16(R0)

R6 = R5 – 5

R7 = R5 * R6

Store R7,32(R0)

Load R1, 8(R0)

R3 = R1 – 5

R2 = R1 * R3

Store R2, 24(R0)

Load R1, 16(R0)

R3 = R1 – 5

R2 = R1 * R3

Store R2, 32(R0)

38

Window in Search of ILP

R5 = 8(R6)

R7 = R5 – R4

R9 = R7 * R7

R15 = 16(R6)

R17 = R15 – R14

R19 = R15 * R15

ILP = 1

ILP = 1.5

 ILP = ?

39

Window in Search of ILP

R5 = 8(R6)

R7 = R5 – R4

R9 = R7 * R7

R15 = 16(R6)

R17 = R15 – R14

R19 = R15 * R15

40

Window in Search of ILP

• ILP = 6/3 = 2 better than 1 and 1.5

• Larger window gives more opportunities

• Who exploit the instruction window?

• But what limits the window?

R5 = 8(R6)

R7 = R5 – R4

R9 = R7 * R7

R15 = 16(R6)

R17 = R15 – R14

R19 = R15 * R15

41

Memory Dependency

• Ambiguous dependency also forces “sequentiality”

• To increase ILP, needs dynamic memory disambiguation

mechanisms that are either safe or recoverable

• ILP could be 1, could be 3, depending on the actual dependence

i1: load r2, (r12)

i2: store r7, 24(r20)

i3: store r1, (0xFF00)

?

?

?

42

Concept of Basic Blocks

 a = array[i];

 b = array[j];

 c = array[k];

 d = b + c;

 while (d<t) {

 a++;

 c *= 5;

 d = b + c;

 }

 array[i] = a;

 array[j] = d;

i1: ldr r1, (r11)

i2: ldr r2, (r12)

i3: ldr r3, (r10)

i4: add r2, r2, r3

i5: bge r2, r9, i9

i6: add r1, r1, #1

i7: mul r3, r3, 5

i8: b i4

i9: str r1, (r11)

i10: str r2, (r12)

I11: mov pc, r14

43

Concept of Basic Blocks

 a = array[i];

 b = array[j];

 c = array[k];

 d = b + c;

 while (d<t) {

 a++;

 c *= 5;

 d = b + c;

 }

 array[i] = a;

 array[j] = d;

i1: ldr r1, (r11)

i2: ldr r2, (r12)

i3: ldr r3, (r10)

i4: add r2, r2, r3

i5: bge r2, r9, i9

i6: add r1, r1, #1

i7: mul r3, r3, 5

i8: b i4

i9: str r1, (r11)

i10: str r2, (r12)

I11: mov pc, r14

44

Control Flow Graph
i1: ldr r1, (r11)

i2: ldr r2, (r12)

i3: ldr r3, (r10)

i4: add r2, r2, r3

i5: bge r2, r9, i9

i6: add r1, r1, #1

i7: mul r3, r3, 5

i8: b i4

i9: str r1, (r11)

i10: str r2, (r12)

I11: mov pc, r14

BB1

BB2

BB3 BB4

45

ILP (without Speculation)

i1: ldr r1, (r11)

i2: ldr r2, (r12)

i3: ldr r3, (r13)

i4: add r2, r2, r3

i5: bge r2, r9, i9

i6: add r1, r1, #1

i7: mul r3, r3, 5

i8: b i4

i9: str r1, (r11)

i10: str r2, (r12)

I11: mov pc, r14

BB1

BB1

BB2

BB3 BB4

ldr r1, (r11) ldr r2, (r12) ldr r3, (r13)

BB2
add r2, r2, r3

bge r2, r9, i9

BB3 add r1, r1, #1 mul r3, r3, 5 b i4

BB4 str r1, (r11)

str r2, (r12) mov pc, r14

ILP = 8/4 = 2

BB1 BB2 BB3

ILP = 8/5 = 1.6

BB1 BB2 BB4

46

ILP (with Speculation, No Control

Dependence)

i1: ldr r1, (r11)

i2: ldr r2, (r12)

i3: ldr r3, (r13)

i4: add r2, r2, r3

i5: bge r2, r9, i9

i6: add r1, r1, #1

i7: mul r3, r3, 5

i8: b i4

i9: str r1, (r11)

i10: str r2, (r12)

I11: mov pc, r14

BB1

BB2

BB3 BB4

BB1 BB2 BB3

ILP = 8/3 = 2.67

BB1 BB2 BB4

ILP = 8/3 = 2.67

ldr r1, (r11) ldr r2, (r12) ldr r3, (r13)

add r2, r2, r3

bge r2, r9, i9

add r1, r1, #1 mul r3, r3, 5

b i4

ldr r1, (r11) ldr r2, (r12) ldr r3, (r13)

add r2, r2, r3

bge r2, r9, i9

str r1, (r11)

str r2, (r12) mov pc, r14

47

Flynn’s Bottleneck

• ILP 1.86

– Programs on IBM 7090

– ILP exploited within basic blocks

• [Riseman & Foster’72]

– Breaking control dependency

– A perfect machine model

– Benchmark includes numerical programs, assembler and compiler

passed jumps 0

jump

1

jump

2

jumps

8

jumps

32

jumps

128

jumps

jumps

Average ILP 1.72 2.72 3.62 7.21 14.8 24.2 51.2

BB0

BB1

BB3

BB2

BB4

ECE7102: Lecture 3
H-H. S. Lee

[Wall’93]

Evaluating effects of microarchitecture on ILP

OOO with 2K instruction window, 64-wide, unit latency

models branch predict ind jump predict reg renaming alias analysis ILP

Stupid NO NO NO NO 1.5 - 2

Poor 64b counter NO NO peephole 2 - 3

Fair 2Kb ctr/gsh 16-addr ring

no table

NO Perfect 3 - 4

Good 16kb loc/gsh 16-addr ring

8-addr table

64 registers perfect 5 - 8

Great 152 kb loc/gsh 2k-addr ring

2k-addr table

256 perfect 6 - 12

Superb fanout 4, then 152kb loc/gsh 2k-addr ring

2k-addr table

256 perfect 8 - 15

Perfect Perfect Perfect Perfect perfect 18 - 50

49

ILP in Embedded Systems

• Can save power by exploiting more ILP, eventually decreasing clock

frequency

ILP Roadblocks

• Data dependence

– Read-after-Write (RAW) or flow dependency (true)

– Write-after-Write (WAW) or output dependency (false)

– Write-after-Read (WAR) or anti-dependency (false)

• Control dependence

– Branch

• Conditional

• Indirect

50

Exploiting ILP

• Hardware

– Control speculation (control)

– Dynamic Scheduling (data)

– Register Renaming (data)

– Dynamic memory disambiguation (data)

• Software

– (Sophisticated) program analysis

– Predication or conditional instruction (control)

– Better register allocation (data)

– Memory Disambiguation by compiler (data)

Many embedded system designers chose this

51

A look at IPC

• IPC = instruction per cycle

• IPC != ILP

• IPC looks on the bottleneck on real

machine with resource limited

52

Other Parallelisms

• SIMD (Single instruction, Multiple data)

– Each register as a collection of smaller data

• Vector processing

– e.g. VECTOR ADD: add long streams of data

– Good for very regular code containing long vectors

– Bad for irregular codes and short vectors

• Multithreading and Multiprocessing (or Multi-core)

– Cycle interleaving

– Block interleaving

– High performance embedded’s option (e.g., packet processing)

• Simultaneous Multithreading (SMT): Hyper-threading

– Separate contexts, shared other microarchitecture modules

53

SIMD Architecture

• SIMD = “single-instruction multiple-data”

• SIMD exploits data-level parallelism

– a single instruction can apply the same operation to

multiple data elements in parallel

• SIMD units employ “vector registers”

– each register holds multiple data elements

54

A SIMD Instruction Example

• Example is a 4-wide add

–each of the 4 elements in reg VA is added to

the corresponding element in reg VB

–the 4 results are placed in the appropriate

slots in reg VC

A.0 A.1 A.2 A.3

B.0 B.1 B.2 B.3

+ + + +

C.0 C.1 C.2 C.3

Reg VA

Reg VB

Reg VC

vector regs add VC,VA,VB

55

Multithreading (MT) Paradigms

Thread 1

Unused

E
xe

cu
ti

o
n

 T
im

e
FU1 FU2 FU3 FU4

Conventional

Superscalar

Single

Threaded

Simultaneous

Multithreading

Fine-grained

Multithreading

(cycle-by-cycle

Interleaving)

Thread 2

Thread 3

Thread 4

Thread 5

Coarse-grained

Multithreading

(Block Interleaving)

Chip

Multiprocessor

(CMP)

56

Embedded processors in the market

• PIC

• AVR

• 8051

• 68HC11

• MAXQ

• 68000

• DSP

• ARM

• ATOM

57

PIC History

• In late 1970, General Instruments built 2
processor
– 16-bit microprocessor named CP1600

– I/O controller named Peripheral Interface Controller
(PIC) for CP1600

• The company and its CP1600 died a quiet death

• PIC live-on! (in most game controllers and toys)
under the company named Microchip

• Microchip is the number one in supplier of 8 bit-
microcontroller

58

Mini PIC12C805

• 8-bit RISC architecture

• 32 KHz

• 512 word memory

• Single cycle instruction

59

Bigger PIC

• PIC16C73

• 4K of program memory

• Internal RAM

• SPI

• I2C

• UART

• 5 channels analog input

http://en.wikipedia.org/wiki/File:PIC_microcontrollers.jpg

60

AVR Microcontroller

• Developed in Norway by 2 students from Norwegian

Institute of Technology

• Produced by Atmel in 1996

• 8-bit RISC Architecture

• Single cycle instruction

• Up to 20 MHz

http://en.wikipedia.org/wiki/File:ATmega8_01_Pengo.jpg

61

8051 microcontroller

Developed by Intel

8-bit CISC architecture 16 bit addressing

Harvard architecture (separate instruction

and data cache)

Support multiply, divider (take more time)

Run up to 150 MHz

http://en.wikipedia.org/wiki/File:KL_Intel_P8051.jpg

62

68HC11

• Developed by Freescale

Semiconductor (formerly

Motorola)

• CISC architecture

• 8-bit microcontroller, 16-

bit address indexing

• Widely used in Barcode-

reader, automotive

industry, and education

• Up to 50 MHz for 68HC12

http://en.wikipedia.org/wiki/File:KL_Motorola_68HC11.jpg

63

MAXQ

Developed by Dallas Semiconductor

(subsidiary from Maxim) in 2004

16-bit RISC architecture

Target for low power

Simple instruction and decoder(only mov

instruction with accumulator)

16 bit processor, 32 MHz

64

68000

• 32 bit RISC

microcontroller from

Freescale

• Can address 16MB of

memory

• 8 data register and 8

address register

• Can run 8 MHz – 20

MHz

http://en.wikipedia.org/wiki/File:KL_Motorola_MC68000_CLCC.jpg

65

DSP

• Major 3 companies

– Texas Instrument (TMS320 series)

– Analog devices (SHARC)

– Freescale semiconductor (DSP56xx)

• Target signal processing applications

– Radar

– Speech processing

– Video conference

66

ARM 7 architecture

• 32-bit RISC architecture

• 3 stages pipeline:

Fetch, Decode, Execute

• Target for low power

67

ARM7 Architecture

68

ARM’s Cortex-A8 (ARMv7-A)

• First implementation of ARMv7 ISA, including Advanced SIMD Media
Extension (NEON) run at 600MHz – 1 GHz

• In-order, dual-issue superscalar core

– 13-stage integer pipeline

– 10-stage NEON media pipeline

– Dedicated L2 with 9-cycle latency

– Branch predictor based on global history

– NEON: 64/128-bit SIMD, 2x-4x over prior ARMv6 SIMD

• Key metrics

– Delivers 2000 Dhrystone MIPS for next-gen consumer apps

– Average IPC of 0.9 across benchmark suites

• EEMBC, SpecINT95, Mediabench, and vendor apps

– Achieve 1 GHz when fab in high performance technology

– Less than 300mW

– Less than 4mm2 at 65nm, excluding NEON, L2 cache, and Embedded
Trace

Source: Williamson of ARM at Fall processor Forum 05

69

Source: Williamson of ARM at Fall processor Forum 05

ARM1026EJ-S™

2005

D
M

IP
S

250

500

750

ARM926EJ-S™

ARM11 MPCore

1000

ARM1176JZF-S™

ARM1136EJ-S™

Release

Adv Development

2000

x4

2006

1500

2500

Pre-2005

ARM Cortex

“Intelligent Computing”

Cortex-A8 "Tiger"

ARM Core-Performance Roadmap

70

Full Cortex-A8 Pipeline Design
13-Stage Integer Pipeline 10-Stage NEON Pipeline

NEON

Load and store

data queue

NEON

Instruction

Decode

Instruction Execute and Load/Store

E1 E3 E4 M1E2 M2 M3 N1 N6N2 N3 N4 N5E5

LS pipe 0 or 1

 Instruction

Fetch

F1 F2F0 D1 D2 D3 D4

Instruction Decode

L3 memory system

BIU pipeline

L2 Data ArrayL2 Tag Array

L1 L2 L3 L4 L5 L6 L8

L1 data cache miss

L1 instruction cache miss

Branch mispredict penalty

NEON store data

Integer register writeback

NEON register writeback

Replay penalty

A
rc

h
ite

c
tu

ra
l re

g
is

te
r file

D0 E0

L9L7
Embedded Trace Macrocell

T10T3T0 T4 T5 T6 T7 T8 T9T2T1 T11

M0

T13T12

MUL pipe 0

ALU pipe 0

ALU pipe 0

Integer ALU pipe

Integer MUL pipe

Integer shift pipe

Non-IEEE FP ADD pipe

Non-IEEE FP MUL pipe

IEEE FP engine

LS permute pipe

N
E

O
N

 re
g

is
te

r file

L2 data

External trace port

L1 data

Source: Williamson of ARM at Fall processor Forum 05

71

Control Speculation

• Dynamic branch predictor
– 512-entry 2-way BTB

– 4K-entry GHB indexed by branch
history and PC

– 8-entry return stack

• Branch resolution
– all branches are resolved in

single stage

– Maintains speculative and non-
speculative versions of branch
history and return stack

Instruction Execute and Load/Store

E1 E3 E4E2 E5

Shft
ALU

+

Flags
Sat

BP

upda

te

MUL

1

MUL

2

MUL

3
ACC

Instruction

Fetch

F1 F2

12 entry

fetch

queue

F0

RAM

+

TLB

BTB

GHB

RS

D1 D2 D3 D4

Branch mispredict

penalty = 13 cycles

A
rc

h
ite

c
tu

ra
l re

g
is

te
r file

D0 E0

Instruction Decode

ALU/MUL pipe 0
BP

Update

AGU

ALU pipe 1

LS pipe 0 or 1

BP

Update

BP

Update

Source: Williamson of ARM at Fall processor Forum 05

72

Instruction Decode
Instruction Execute

Instruction Decode

Integer register writeback

Pending and replay

queue

Dec/seq
Dec

queue

read/write

Score-

board

+

issue

logic

Early

Dec

Early

Dec Dec

RegFile

ID

remap

Replay penalty = 9 cycles

A
rc

h
ite

c
tu

ra
l re

g
is

te
r file

E1 E3 E4E2 E5D1 D2 D3 D4D0 E0

ALU pipe 0

MUL pipe 0

ALU pipe 0

LS pipe 0 or 1

• Instruction decode highlights
– pending queue reduces Fetch stalls and increases pairing

opportunities

– replay queue keeps instructions for reissue on memory system stall

– scoreboard predicts register availability using static scheduling
techniques

– cross-checks in D3 allow issue of dependent instruction pairs

 Source: Williamson of ARM at Fall processor Forum 05

73

Instruction Execution

• Execution pipeline highlights
– 2 symmetric ALU pipelines: Shift/ALU/SAT

– Load/store pipe used by instructions in either pipeline

– Multiply instructions are tied to pipe 0

– All key forwarding paths supported

– Static scheduling allows for extensive clock gating

Instruction Execute

ALU pipe 1

ALU

multiply

pipe 0

Load/store

pipe 0 or 1
ALU WB

Shft
ALU

+

flags
Sat

BP

update
WB

Shft
ALU

+

flags
Sat

BP

update
WB

MUL

1
MUL

2

MUL

3
ACC WB

Integer register writeback

A
rc

h
ite

c
tu

ra
l re

g
is

te
r file

E1 E3 E4E2 E5E0

INST 0

INST 1

LS Pipeline

Source: Williamson of ARM at Fall processor Forum 05

74

Memory System

Source: Williamson of ARM at Fall processor Forum 05

LS pipeline

 32kB 4-way set associative data cache
(configurable)

 Address hash array used to predict cache way

Saves power and improves timing

 load data forwarding in E3 to all critical sources

 one-cycle load-use penalty for ALU

 store data not required until E3

L3

memory

system

L2 data arrayL2 tag array

Arb RAM 2
Tag

miss
Data

format
RAM 1 RAM 2RAM 1

L1 L2 L3 L4 L5 L6 L8

RAM 3
Bank

mux

L9L7

Load data miss

E1 E2 E3 E4 E5

LS pipeline

BIU pipeline

Load/store

pipe 0 or 1
AGU

RAM

+

TLB

Format

forward
WB

L2

update

BIU pipeline

 9-cycle minimum access latency to L2 cache

 L2 built using standard compiled RAMS (64k-2MB configurable size)

 64/128bit AXI L3 bus interface supports up to 9 outstanding transactions

75

NEON Interfaces

 Skewed late in pipeline, past the retire point

 reduces interface complexity

 exception handling not required

 decoupling queues from integer machine

 removes load-use penalty

 negative impact on NEON -> ARM transfers

 non-blocking ARM register file helps hide latency

NEON

Load

data

queue

Instruction Execute

 and Load/Store

E1 E3 E4 M1E2 M2 M3 N1 N6N2 N3 N4 N5E5

BIU pipeline
NEON store data

ARM register writeback

E0 M0

L2 Data

L1 Data

NEON

instruction

queue
NEON

Inst

Dec

NEON Instruction Execute

ARM

reg

file
NEON

reg

file

NEON register writeback

Machine commit point

LS pipeline

ARM register writeback

Queue full

Inst

Decode

 Streaming to and from L2 memory system

 up to 8 outstanding transactions

 can receive 128 bits/cycle

 can receive data from L1 or L2 memory system

 independent NEON store buffer

Source: Williamson of ARM at Fall processor Forum 05

76

NEON Media Engine Unit

 static scheduling with fire-and-forget issue

 1 LS + 1 NINT/NFP can issue each cycle

 all pipelines are 64-bit SIMD

 floating-point MAC executed using both FADD and FMUL
pipelines

NEON Pipeline

Load and store

with alignment

Instruction Decode

8-entry

load queue

16 entry

Inst

Queue

Integer

ALU,

multiply,

and shift

pipes

Non-IEEE

FMAC pipe

Non-IEEE

FADD pipe

IEEE

single/double

precision VFP

Load/store

and

permute

VFP

FMUL1 FMUL 2 FMUL 3 FMUL 4 WB

FMT ALU ABS

SHIFT 1 SHIFT 2 SHIFT 3

DUP
MUL

1

MUL

2

ACC

1

ACC

2

WB

WB

FADD 1 FADD 2 FADD 3 FADD 4 WB

PERM 1 PERM 2 PERM 3
8-entry

store

queue
WB

Inst Dec

WB

Align

NEON register writeback

Seq

+

score-

board

Reg read

+

inst

issue

M1 M2 M3 N1 N6N2 N3 N4 N5M0

WB

Instruction issue Execution pipelines

Source: Williamson of ARM at Fall processor Forum 05

77

ARM’s Cortex-A9

• Out-of-order speculative issue

• MPCore version contain 1 to 4 cores

78

Cortex-A9‘s Accelerator Coherence

Port (ACP)

79

Intel ATOM

• Code names: “Silverthorne” and “Diamondville”

• Design goals
– High mobility

– Low-power, low-power, low-power

– Full x86 64-bit (Intel 64) compatibility
• i.e., no software emulation, no broken legacy software

• Support virtualization, SSSE3, SMT

• Even run Windows Vista and definitely Linux

• Ambitious or almost insane at the beginning

– Of course, cost

– Almost from a clean-slate

• Markets
– Netbooks (or sub-notebooks)

– consumer electronics

– MIDs

Silverthorne die, 45nm

80

Non-square shape,

suggesting future

dual-core

81

ATOM Specifications

Source: Microprocessor Report

• Operating voltage: 0.75V to 1.2V

• Test frequency up to 2 GHz

• TDP is the worst case, Avg power and idle power are more typical

• Points of comparison

– Intel Celeron’s TDP was 8W to 12W for their ULV part

– VIA’s Isaiah cannot match ATOM’s TDP

82

ATOM Fact

• Dimension: 3.1 x 7.8 mm (24.2 mm2)
– VIA’s Isaiah: 63 mm2

– VIA’s Centaur C7-M: 30 mm2, previous x86 record holder

• 47.1 million transistors @ 45nm, 9 metal layers
– CPU core has 13.8 million transistors

• 16 pipeline stages

• Two-way superscalar in-order with Hyper-Threading

• L1 caches 24 kb data cache, 32 kb instruction cache
– 8T cell with one read port and one write port

– Operate at lower voltage

• L2 cache 512 kb cache
– 6T SRAM cell

– SECDED ECC protection implemented

– Set associativity is programmable from 2 to 8 ways

• FSB
– At 400MHz or 533 MHz

– can be shut down

83

ATOM Instruction Pipeline

• To conserve “Power,” ATOM processor
– Tagging boundaries in I-cache (i.e., skip variable length decoder)

• X86 instruction can be 1 to 15 bytes

– Decode assumes hit in the cache (otherwise, 19 stages)

– No micro-op breakup (micro-op fusion), back to P54C

– Discard aggressive control speculation

• Branch misprediction penalty 13 cycles

IF1 IF2 IF3 ID1 ID2 ID3 SC IS IRF AG DC1 DC2 EX1 FT1 FT2 WB

Instruction

Fetch

Instruction

Decode

Instruction

Dispatch

D-Cache

Access

Exception

& MT Handling

84

ATOM Microarchitecture

Source: Microprocessor Report

• HT claimed to enlarge

silicon asset by 8%

• Shared cache space

deprived/competed

between threads

• No dedicated Multiplier

– use SIMD Multiplier

• No dedicated Int Divider

- use FP Divider

85

Enhanced Speed States (C Steps)

• 0.875V drawing less than 1W running Vista

100 s 30 s

86

Performance Comparison

• Webpages are on local flash (i.e., no network latency)

• ARM11
– fully synthesized @ 90nm

– Lower power (0.6mW/MHz 400MHz ~ 240mW)

• ATOM’s HT Technology
– Improve performance by 36 to 47%

– Worsen power by 17 to 19%

Source: Microprocessor Report

Source: Microprocessor Report

87

Question?

 You are chosen a processor for an airbag system. The

program has 1000 instructions. Assumed that all

processor has same ISA and IPC of 1. Each instruction

takes 1 byte. The program has to finish execution within

1ms. Which processor from below table should be used,

assuming that all architecture is byte-accessible?

 a) PIC 8 bit processor, 32 KHz, 10 baht

 b) AVR 8 bit processor, 20 MHz, 50 baht

 c) 68HC12 16 bit processor, 20 MHz, 100 baht

 d) ARM 32 bit processor, 500 MHz, 1000 baht

