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Definition of Hardware 

The part of a system that can be kicked 
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Basic Microarchitecture and 

Embedded processors in the market 
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The Acronyms: CISC vs. RISC 

RISC  Reduced Instruction Set 

Computers 

 

versus 

CISC  Complex Instruction Set 

Computers 
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From CISC to RISC 

• Why CISC? 

– Memory are expensive 
and slow back then 

– Cramming more 
functions into one 
instruction 

– Using microcode ROM 
(μROM) for “complex” 
operations 

• Justification for RISC 

– Complex apps are 
mostly composed of 
simple assignments 

– RAM speed catching 
up 

– Compiler (human) 
getting smarter 

– Frequency  shorter 
pipe stages  

CISC RISC 
Variable length instructions Fixed-length instructions 

Abundant instructions and 
addressing modes 

Fewer instructions and 
addressing modes 

Longer decoding Easier decoding 

Mem-to-mem operations Load/store architecture 

Use on-core microcode  No microinstructions, 
directly executed by HW logic 

Less pipelineability Better pipelineability 

Closer semantic gap (shift 
complexity to microcode) 

Needs smart compilers 

IBM 360, DEC VAX, Intel 
IA32, Mot 68030 

IBM 801, IBM RS6000, 
MIPS, Sun Sparc 
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CISC vs. RISC (1970s – 80s) 

Source: Andy Tanenbaum’s Structured Computer Organization 

IBM   

370/168 

VAX     

11/780 

Xerox 

Dorado 

IBM          

801 

Berkeley 

RISC1 

Stanford 

MIPS 

Year 1973 1978 1978 1980 1981 1983 

# instructions 208 303 270 120 39 55 

Microcode  54KB 61KB 17KB 0 0 0 

Instruction 

size 

2 to 6 B 2 to 57 B 1 to 3 B 4B 4B 4B 

Execution 

model 

Reg-reg 

Reg-mem 

Mem-mem 

Reg-reg 

Reg-mem 

Mem-mem 

Stack Reg-reg Reg-reg Reg-reg 

CISC RISC 
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RISC Views 

• From processor architect perspective 

– Simpler decoding and pipelining 

– More scalable 

– Interlock either provided by hardware of by 

compiler/scheduler 

• From compiler perspective 

– A large “architecture register file” to manipulate 

• Due to free-up space from microcode ROM 

• How? e.g. Register windows or Register Stack Engine (RSE in 

Itanium) 

– Performance heavily rely on static code scheduling  

• Key: finding parallelism 
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CISC Camp Strikes Back [Colwell et al. ‘85] 

• ”Instruction Set and Beyond: Computers, Complexity and 

Controversy” in IEEE Computer, Sept. 1985. 

• RISC lessons are not incompatible or mutually exclusive 

– Large register file (register windows) is not a patent of 

RISCs 

•  Intel 432 study as an example 

– Decoding could be masked by execution 

– CISCy ISA plays no culprit of procedure call overheads  

• Moore’s Law will narrow the gap 

• Compiler costs will dominate 
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Our Implementation 

• An edge triggered methodology 

• Typical execution: 

– read contents of some state elements,  

– send values through some combinational logic 

– write results to one or more state elements 

Clock cycle

State

element

1

Combinational logic

State

element

2
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• Built using D flip-flops 

Register File 

M

u

x

Register 0

Register 1

Register n –  1

Register n

M

u

x
Read data 1

Read data 2

Read register

number 1

Read register

number 2

Read register
number 1 Read

data 1

Read
data 2

Read register
number 2

Register file
Write
register

Write
data Write
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Register File 

• Note:  we still use the real clock to determine when to 

write 

n-to-1

decoder

Register 0

Register 1

Register n –  1

C

C

D

D

Register n

C

C

D

D

Register number

Write

Register data

0

1

n –  1

n
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Simple Implementation 

• Include the functional units we need for each instruction 

PC

Instruction

memory

Instruction
address

Instruction

a. Instruction memory b. Program counter

Add Sum

c. Adder

16 32
Sign

extend

b. Sign-extension unit

MemRead

MemWrite

Data

memory
Write
data

Read
data

a. Data memory unit

Address

A L U   c o n t r o l 

R e g W r i t e 

R e g i s t e r s 
W r i t e 
r e g i s t e r 

R e a d 
d a t a   1 

R e a d 
d a t a   2 

R e a d 
r e g i s t e r   1 

R e a d 
r e g i s t e r   2 

W r i t e 
d a t a 

A L U 
r e s u l t 

A L U 

D a t a 

D a t a 

R e g i s t e r 

n u m b e r s 

a .   R e g i s t e r s b .   A L U 

Z e r o 
5 

5 

5 3 
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Building the Datapath 
• Use multiplexers to stitch them together 

MemtoReg

MemRead

MemWrite

ALUOp

ALUSrc

RegDst

PC

Instruction
memory

Read
address

Instruction
[31– 0]

Instruction [20– 16]

Instruction [25– 21]

Add

Instruction [5– 0]

RegWrite

4

16 32Instruction [15– 0]

0

Registers

Write
register

Write
data

Write
data

Read
data 1

Read
data 2

Read
register 1

Read
register 2

Sign
extend

ALU
result

Zero

Data
memory

Address Read
data

M
u
x

1

0

M
u
x

1

0

M
u
x

1

0

M
u
x

1

Instruction [15– 11]

ALU
control

Shift

left 2

PCSrc

ALU

Add
ALU

result
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Basic Architecture 

 

 

 

 

 

 

 

 

 

 

 

Instruction

memory

Address

4

32

0

Add
Add

result

Shift

left 2

Instruction

M
u
x

0

1

Add

PC

0
Write
data

M
u
x

1

Registers

Read
data 1

Read
data 2

Read
register 1

Read
register 2

16
Sign

extend

Write
register

Write
data

Read
data

Address

Data

memory
1

ALU
result

M
u
x

ALU

Zero

IF: Instruction fetch ID: Instruction decode/

register file read

EX: Execute/

address calculation

MEM: Memory access WB: Write back
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Instruction Fetch 

 

 

 

 

 

 

 

 

 

 

 

Instruction

memory

Address

4

32

0

Add
Add

result

Shift

left 2

Instruction

M
u
x

0

1

Add

PC

0
Write
data

M
u
x

1

Registers

Read
data 1

Read
data 2

Read
register 1

Read
register 2

16
Sign

extend

Write
register

Write
data

Read
data

Address

Data

memory
1

ALU
result

M
u
x

ALU

Zero

IF: Instruction fetch ID: Instruction decode/

register file read

EX: Execute/

address calculation

MEM: Memory access WB: Write back

PC = 0 

 

0:0x02910210 

4:0x04121002 

8:0x02410110 

… 
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Instruction Decoder 

 

 

 

 

 

 

 

 

 

 

 

Instruction

memory

Address

4

32

0

Add
Add

result

Shift

left 2

Instruction

M
u
x

0

1

Add

PC

0
Write
data

M
u
x

1

Registers

Read
data 1

Read
data 2

Read
register 1

Read
register 2

16
Sign

extend

Write
register

Write
data

Read
data

Address

Data

memory
1

ALU
result

M
u
x

ALU

Zero

IF: Instruction fetch ID: Instruction decode/

register file read

EX: Execute/

address calculation

MEM: Memory access WB: Write back

PC = 0 

 

0:0x02910210 

4:0x04121002 

8:0x02410110 

… 

 

0
x
0
2
9
1
0
2
1
0

 

add r0, r1, 

r2 

 

r0: 0 

r1: 1 

r2: 2 

… 
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Execution 

 

 

 

 

 

 

 

 

 

 

 

Instruction

memory

Address

4

32

0

Add
Add

result

Shift

left 2

Instruction

M
u
x

0

1

Add

PC

0
Write
data

M
u
x

1

Registers

Read
data 1

Read
data 2

Read
register 1

Read
register 2

16
Sign

extend

Write
register

Write
data

Read
data

Address

Data

memory
1

ALU
result

M
u
x

ALU

Zero

IF: Instruction fetch ID: Instruction decode/

register file read

EX: Execute/

address calculation

MEM: Memory access WB: Write back

PC = 4 

 

0:0x02910210 

4:0x04121002 

8:0x02410110 

… 

 

a
d

d
 

 

r0: 0 

r1: 1 

r2: 2 

… 

 

1
 

2
 

3
 



17 

Memory 

 

 

 

 

 

 

 

 

 

 

 

Instruction

memory

Address

4

32

0

Add
Add

result

Shift

left 2

Instruction

M
u
x

0

1

Add

PC

0
Write
data

M
u
x

1

Registers

Read
data 1

Read
data 2

Read
register 1

Read
register 2

16
Sign

extend

Write
register

Write
data

Read
data

Address

Data

memory
1

ALU
result

M
u
x

ALU

Zero

IF: Instruction fetch ID: Instruction decode/

register file read

EX: Execute/

address calculation

MEM: Memory access WB: Write back

PC = 4 

 

0:0x02910210 

4:0x04121002 

8:0x02410110 

… 

 

 

r0: 0 

r1: 1 

r2: 2 

… 

 

3
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Writeback 

 

 

 

 

 

 

 

 

 

 

 

Instruction

memory

Address

4

32

0

Add
Add

result

Shift

left 2

Instruction

M
u
x

0

1

Add

PC

0
Write
data

M
u
x

1

Registers

Read
data 1

Read
data 2

Read
register 1

Read
register 2

16
Sign

extend

Write
register

Write
data

Read
data

Address

Data

memory
1

ALU
result

M
u
x

ALU

Zero

IF: Instruction fetch ID: Instruction decode/

register file read

EX: Execute/

address calculation

MEM: Memory access WB: Write back

PC = 4 

 

0:0x02910210 

4:0x04121002 

8:0x02410110 

… 

 

 

r0: 3 

r1: 1 

r2: 2 

… 

 

3
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Instruction Fetch 

 

 

 

 

 

 

 

 

 

 

 

Instruction

memory

Address

4

32

0

Add
Add

result

Shift

left 2

Instruction

M
u
x

0

1

Add

PC

0
Write
data

M
u
x

1

Registers

Read
data 1

Read
data 2

Read
register 1

Read
register 2

16
Sign

extend

Write
register

Write
data

Read
data

Address

Data

memory
1

ALU
result

M
u
x

ALU

Zero

IF: Instruction fetch ID: Instruction decode/

register file read

EX: Execute/

address calculation

MEM: Memory access WB: Write back

PC = 4 

 

0:0x02910210 

4:0x04121002 

8:0x02410110 

… 

 

 

r0: 3 

r1: 1 

r2: 2 

… 
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Instruction Decoder 

 

 

 

 

 

 

 

 

 

 

 

Instruction

memory

Address

4

32

0

Add
Add

result

Shift

left 2

Instruction

M
u
x

0

1

Add

PC

0
Write
data

M
u
x

1

Registers

Read
data 1

Read
data 2

Read
register 1

Read
register 2

16
Sign

extend

Write
register

Write
data

Read
data

Address

Data

memory
1

ALU
result

M
u
x

ALU

Zero

IF: Instruction fetch ID: Instruction decode/

register file read

EX: Execute/

address calculation

MEM: Memory access WB: Write back

PC = 4 

 

0:0x02910210 

4:0x04121002 

8:0x02410110 

… 

 

0
x
0

4
1

2
1

0
0

2
 

 
ldr r1, [r2,#2] 

 

r0: 3 

r1: 1 

r2: 2 

… 
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Execution 

 

 

 

 

 

 

 

 

 

 

 

Instruction

memory

Address

4

32

0

Add
Add

result

Shift

left 2

Instruction

M
u
x

0

1

Add

PC

0
Write
data

M
u
x

1

Registers

Read
data 1

Read
data 2

Read
register 1

Read
register 2

16
Sign

extend

Write
register

Write
data

Read
data

Address

Data

memory
1

ALU
result

M
u
x

ALU

Zero

IF: Instruction fetch ID: Instruction decode/

register file read

EX: Execute/

address calculation

MEM: Memory access WB: Write back

PC = 8 

 

0:0x02910210 

4:0x04121002 

8:0x02410110 

… 

 

ld
r 

 

r0: 3 

r1: 1 

r2: 2 

… 

 

2
 

2
 

4
 

 

0:0x8 

4:0x9 

8:0xA 

… 
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Memory 

 

 

 

 

 

 

 

 

 

 

 

Instruction

memory

Address

4

32

0

Add
Add

result

Shift

left 2

Instruction

M
u
x

0

1

Add

PC

0
Write
data

M
u
x

1

Registers

Read
data 1

Read
data 2

Read
register 1

Read
register 2

16
Sign

extend

Write
register

Write
data

Read
data

Address

Data

memory
1

ALU
result

M
u
x

ALU

Zero

IF: Instruction fetch ID: Instruction decode/

register file read

EX: Execute/

address calculation

MEM: Memory access WB: Write back

PC = 8 

 

0:0x02910210 

4:0x04121002 

8:0x02410110 

… 

 

 

r0: 3 

r1: 1 

r2: 2 

… 

 

9
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Writeback 

 

 

 

 

 

 

 

 

 

 

 

Instruction

memory

Address

4

32

0

Add
Add

result

Shift

left 2

Instruction

M
u
x

0

1

Add

PC

0
Write
data

M
u
x

1

Registers

Read
data 1

Read
data 2

Read
register 1

Read
register 2

16
Sign

extend

Write
register

Write
data

Read
data

Address

Data

memory
1

ALU
result

M
u
x

ALU

Zero

IF: Instruction fetch ID: Instruction decode/

register file read

EX: Execute/

address calculation

MEM: Memory access WB: Write back

PC = 8 

 

0:0x02910210 

4:0x04121002 

8:0x02410110 

… 

 

 

r0: 3 

r1: 9 

r2: 2 

… 

 

9
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Sequential Program Semantics 

 

• Human expects “sequential semantics” 

– Tries to issue an instruction every clock cycle 

– There are dependencies, control hazards and long 

latency instructions 

 

• To achieve performance with minimum effort 

– To issue more instructions every clock cycle 

– E.g., an embedded system can save power by 

exploiting instruction level parallelism and decrease 

clock frequency  
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Pipelining 

• What should be the steps to build a car 

washing machine? 
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Car washing machine 

Step 1: Rinse in fresh water mixed with soap 

Step 2: Wash by scrubbing the car 

Step 3: Blast in water jet 

Step 4: Rinse in fresh water 

Step 5: Wax 

Step 6: Dry the car 
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Car washing machine 

• Each step is independent 

• To wash more cars, we can do all steps 

simultaneously 
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Sequential processing 
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Pipelining example 
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Scalar Pipeline (Baseline) 
• Machine Parallelism  = D (= 5) 

• Issue Latency (IL) = 1 

• Peak IPC = 1, IPC = instruction per cycle = 1/CPI 

• Pipeline depth = 5 

1 

2 

3 

4 

IF DE EX MEM WB 

5 

Execution Cycle 

In
s
tr

u
c

ti
o

n
 S

e
q

u
e

n
c

e
 

D 

6 
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Superpipelined Machine 
• 1 major cycle = M minor cycles  

• Machine Parallelism = M x D (= 15) per major cycle 

• Issue Latency (IL) = 1 minor cycles 

• Peak IPC = 1 per minor cycle = M per baseline cycle 

• Superpipelined machines are essentially deeper pipelined 

• Pipeline depth = 15 

Execution Cycle 

In
s
tr

u
c

ti
o

n
 S

e
q

u
e

n
c

e
 

IF DE EX MEM WB 

1 

2 

3 

4 

5 

6 

7 

8 

9 

3 6 9 12 15 18 

I 

M 

D 

D 

D 

E 

E 

E 

M 

D 

D 

D 

D 

D 

I I 

I I 

I 

E 

E E 

E 

E 

D 

E 

M I I I D D D W W W 

E E 

M 
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Superscalar Machine 
• Can issue > 1 instruction per cycle by hardware 

• Replicate resources, e.g. multiple adders or multi-ported data caches 

• Machine Parallelism = S x D (= 10) where S is superscalar degree 

• Issue Latency (IL) = 1 

• IPC = 2 

 

Execution Cycle 

In
s
tr

u
c

ti
o

n
 S

e
q

u
e

n
c

e
 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

S 

IF DE EX MEM WB 
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But, an instruction is not a car! 

• Control dependency 

 

• Data dependency 

 

• Resource dependency 
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Instruction-Level Parallelism 

(ILP) 
• Fine-grained parallelism 

– Multiple operations can be executed simultaneously 

– Programs’ property 

– Independent on hardware technology improvements 

• Enabled and improved by RISC 

– More ILP of a RISC over CISC does not imply a better overall 
performance  

– CISC can be implemented like a RISC 

• A measure of inter-instruction dependency in an app 

– ILP assumes a unit-cycle operation, infinite resources, perfect 
frontend 

– ILP != IPC  

– IPC = # instructions / # cycles 

– ILP is the upper bound of attainable IPC 

• Limited by 

– Data dependency 

– Control dependency  
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c1=i1:    load r2, (r12) 

c2=i2:   add r1, r2, 9 

c3=i3:   mul r2, r5, r6   
a 

o 

ILP Example 
• True dependency forces 

“sequentiality” 

• ILP = 3/3 = 1 

• False dependency removed 

• ILP = 3/2 = 1.5 

i1:   load r2, (r12) 

i2:   add r1, r2, 9 

i3:   mul r8, r5, r6   

t 

c1:   load r2, (r12) 

c2:   add r1, r2, #9 mul r8, r5, r6   

t 
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ILP, Another Example 

Load R1, 8(R0) 

R3 = R1 – 5 

R2 = R1 * R3 

Store R2 , 24(R0) 

Load R1, 16(R0) 

R3 = R1 – 5 

R2 = R1 * R3 

Store R2, 32(R0)   ILP = 

When only 4 registers available 
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ILP, Another Example 

 ILP = 

When more registers (or register renaming) available 

Load R1, 8(R0) 

R3 = R1 – 5 

R2 = R1 * R3 

Store R2, 24(R0)  

Load R5, 16(R0) 

R6 = R5 – 5 

R7 = R5 * R6 

Store R7,32(R0)  

Load R1, 8(R0) 

R3 = R1 – 5 

R2 = R1 * R3 

Store R2, 24(R0)  

Load R1, 16(R0) 

R3 = R1 – 5 

R2 = R1 * R3 

Store R2, 32(R0)  
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Window in Search of ILP 

R5 = 8(R6) 

R7 = R5 – R4 

R9 = R7 * R7 

R15 = 16(R6) 

R17 = R15 – R14 

R19 = R15 * R15 

ILP = 1  

ILP = 1.5  

 ILP = ? 
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Window in Search of ILP 

R5 = 8(R6) 

R7 = R5 – R4 

R9 = R7 * R7 

R15 = 16(R6) 

R17 = R15 – R14 

R19 = R15 * R15 



40 

Window in Search of ILP 

• ILP = 6/3 = 2 better than 1 and 1.5 

• Larger window gives more opportunities 

• Who exploit the instruction window? 

• But what limits the window? 

R5 = 8(R6)   

R7 = R5 – R4 

R9 = R7 * R7 

R15 = 16(R6) 

R17 = R15 – R14

  

  

R19 = R15 * R15 
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Memory Dependency 

• Ambiguous dependency also forces “sequentiality” 

• To increase ILP, needs dynamic memory disambiguation 

mechanisms that are either safe or recoverable 

• ILP could be 1, could be 3, depending on the actual dependence 

i1:    load  r2, (r12) 

 

i2:   store r7, 24(r20) 

 

i3:   store  r1, (0xFF00)   

? 

? 

? 



42 

Concept of Basic Blocks 

    a = array[i]; 

    b = array[j]; 

    c = array[k]; 

    d = b + c; 

    while (d<t) {    

      a++; 

      c *= 5; 

      d = b + c; 

    }  

    array[i] = a; 

    array[j] = d; 

i1:     ldr   r1, (r11) 

i2:     ldr   r2, (r12) 

i3:     ldr   r3, (r10)   

i4:     add r2, r2, r3 

i5:     bge r2, r9,  i9   

i6:     add  r1, r1, #1 

i7:     mul  r3, r3, 5 

i8:     b       i4   

i9:     str   r1, (r11) 

i10:   str   r2, (r12) 

I11:   mov   pc, r14   
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Concept of Basic Blocks 

    a = array[i]; 

    b = array[j]; 

    c = array[k]; 

    d = b + c; 

    while (d<t) {    

      a++; 

      c *= 5; 

      d = b + c; 

    }  

    array[i] = a; 

    array[j] = d; 

i1:     ldr   r1, (r11) 

i2:     ldr   r2, (r12) 

i3:     ldr   r3, (r10)   

i4:     add r2, r2, r3 

i5:     bge r2, r9,  i9   

i6:     add  r1, r1, #1 

i7:     mul  r3, r3, 5 

i8:     b       i4   

i9:     str   r1, (r11) 

i10:   str   r2, (r12) 

I11:   mov   pc, r14 
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Control Flow Graph 
i1:   ldr r1, (r11) 

i2:   ldr r2, (r12) 

i3:   ldr r3, (r10)   

i4:   add r2, r2, r3 

i5:   bge  r2, r9, i9 

 

i6:   add r1, r1, #1 

i7:   mul r3, r3, 5 

i8:   b    i4   

i9:     str   r1, (r11) 

i10:   str   r2, (r12) 

I11:   mov pc, r14   

BB1 

BB2 

BB3 BB4 



45 

ILP (without Speculation) 

i1:   ldr r1, (r11) 

i2:   ldr r2, (r12) 

i3:   ldr r3, (r13)   

i4:   add r2, r2, r3 

i5:   bge  r2, r9, i9 

 

i6:   add r1, r1, #1 

i7:   mul r3, r3, 5 

i8:   b    i4   

i9:     str   r1, (r11) 

i10:   str   r2, (r12) 

I11:   mov pc, r14   

BB1 

BB1 

BB2 

BB3 BB4 

ldr r1, (r11) ldr r2, (r12) ldr r3, (r13) 

BB2 
add r2, r2, r3 

bge r2, r9, i9  

BB3 add r1, r1, #1 mul r3, r3, 5  b i4 

BB4 str r1, (r11) 

str r2, (r12)  mov pc, r14 

ILP = 8/4 = 2 

BB1  BB2  BB3  

ILP = 8/5 = 1.6 

BB1  BB2  BB4  
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ILP (with Speculation, No Control 

Dependence) 

i1:   ldr r1, (r11) 

i2:   ldr r2, (r12) 

i3:   ldr r3, (r13)   

i4:   add r2, r2, r3 

i5:   bge  r2, r9, i9 

 

i6:   add r1, r1, #1 

i7:   mul r3, r3, 5 

i8:  b    i4   

i9:     str   r1, (r11) 

i10:   str   r2, (r12) 

I11:   mov pc, r14   

BB1 

BB2 

BB3 BB4 

BB1  BB2  BB3  

ILP = 8/3 = 2.67 

BB1  BB2  BB4  

ILP = 8/3 = 2.67 

ldr r1, (r11) ldr r2, (r12) ldr r3, (r13) 

add r2, r2, r3 

bge r2, r9, i9 

add r1, r1, #1 mul r3, r3, 5 

b i4 

ldr r1, (r11) ldr r2, (r12) ldr r3, (r13) 

add r2, r2, r3 

bge r2, r9, i9 

str r1, (r11) 

str r2, (r12) mov pc, r14 



47 

Flynn’s Bottleneck 

• ILP   1.86  

– Programs on IBM 7090 

– ILP exploited within basic blocks 

• [Riseman & Foster’72] 

– Breaking control dependency 

– A perfect machine model 

– Benchmark includes numerical programs, assembler and compiler 

 

 

 
passed jumps  0 

jump 

1   

jump 

2 

jumps 

8 

jumps 

32 

jumps 

128 

jumps 

  

jumps 

Average ILP 1.72 2.72 3.62 7.21 14.8 24.2 51.2 

BB0 

BB1 

BB3 

BB2 

BB4 



ECE7102: Lecture 3 
H-H. S. Lee 

[Wall’93] 

Evaluating effects of microarchitecture on ILP 

OOO with 2K instruction window, 64-wide, unit latency  

models branch predict ind jump predict reg renaming alias analysis ILP

Stupid NO NO NO NO 1.5 - 2

Poor 64b counter NO NO peephole 2 - 3

Fair 2Kb ctr/gsh 16-addr ring

no table

NO Perfect 3 - 4

Good 16kb loc/gsh 16-addr ring

8-addr table

64 registers perfect 5 - 8

Great 152 kb loc/gsh 2k-addr ring

2k-addr table

256 perfect 6 - 12

Superb fanout 4, then 152kb loc/gsh 2k-addr ring

2k-addr table

256 perfect 8 - 15

Perfect Perfect Perfect Perfect perfect 18 - 50
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ILP in Embedded Systems 

• Can save power by exploiting more ILP, eventually decreasing clock 

frequency 

 

ILP Roadblocks  

• Data dependence 

– Read-after-Write (RAW) or flow dependency (true) 

– Write-after-Write (WAW) or output dependency (false) 

– Write-after-Read (WAR) or anti-dependency (false) 

• Control dependence 

– Branch  

• Conditional 

• Indirect   
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Exploiting ILP  

• Hardware  

– Control speculation (control) 

– Dynamic Scheduling (data) 

– Register Renaming (data) 

– Dynamic memory disambiguation (data) 

 

• Software 

– (Sophisticated) program analysis 

– Predication or conditional instruction (control) 

– Better register allocation (data) 

– Memory Disambiguation by compiler (data) 

 

Many embedded system designers chose this 
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A look at IPC 

• IPC = instruction per cycle 

• IPC != ILP 

• IPC looks on the bottleneck on real 

machine with resource limited 
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Other Parallelisms 

• SIMD (Single instruction, Multiple data) 

– Each register as a collection of smaller data 

 

• Vector processing 

– e.g. VECTOR ADD: add long streams of data 

– Good for very regular code containing long vectors 

– Bad for irregular codes and short vectors 

 

• Multithreading and Multiprocessing (or Multi-core) 

– Cycle interleaving 

– Block interleaving 

– High performance embedded’s option (e.g., packet processing) 

 

• Simultaneous Multithreading (SMT): Hyper-threading 

– Separate contexts, shared other microarchitecture modules 
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SIMD Architecture 

• SIMD = “single-instruction multiple-data” 

 

• SIMD exploits data-level parallelism 

– a single instruction can apply the same operation to 

multiple data elements in parallel 

 

• SIMD units employ “vector registers” 

– each register holds multiple data elements 
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A SIMD Instruction Example 

• Example is a 4-wide add 

–each of the 4 elements in reg VA is added to 

the corresponding element in reg VB 

–the 4 results are placed in the appropriate 

slots in reg VC 

A.0 A.1 A.2 A.3

B.0 B.1 B.2 B.3

+ + + +

C.0 C.1 C.2 C.3

Reg VA

Reg VB

Reg VC

vector regs add VC,VA,VB



55 

Multithreading (MT) Paradigms 

Thread 1 

Unused 

E
xe

cu
ti

o
n

 T
im

e 
FU1 FU2 FU3 FU4 

Conventional 

Superscalar 

Single 

Threaded 

Simultaneous 

Multithreading 

Fine-grained 

Multithreading 

(cycle-by-cycle 

Interleaving) 

 

Thread 2 

Thread 3 

Thread 4 

Thread 5 

Coarse-grained 

Multithreading 

(Block Interleaving) 

Chip  

Multiprocessor 

(CMP) 
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Embedded processors in the market 

• PIC 

• AVR 

• 8051 

• 68HC11 

• MAXQ 

• 68000 

• DSP 

• ARM 

• ATOM 
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PIC History 

• In late 1970, General Instruments built 2 
processor 
– 16-bit microprocessor named CP1600 

– I/O controller named Peripheral Interface Controller 
(PIC) for CP1600 

• The company and its CP1600 died a quiet death 

• PIC live-on! (in most game controllers and toys) 
under the company named Microchip 

• Microchip is the number one in supplier of 8 bit-
microcontroller 
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Mini PIC12C805 

• 8-bit RISC architecture 

• 32 KHz 

• 512 word memory 

• Single cycle instruction 
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Bigger PIC 

• PIC16C73 

• 4K of program memory 

• Internal RAM 

• SPI 

• I2C 

• UART 

• 5 channels analog input 

http://en.wikipedia.org/wiki/File:PIC_microcontrollers.jpg
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AVR Microcontroller 

• Developed in Norway by 2 students from Norwegian 

Institute of Technology 

• Produced by Atmel in 1996 

• 8-bit RISC Architecture 

• Single cycle instruction 

• Up to 20 MHz 

http://en.wikipedia.org/wiki/File:ATmega8_01_Pengo.jpg
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8051 microcontroller 

Developed by Intel 

8-bit CISC architecture 16 bit addressing 

Harvard architecture (separate instruction 

and data cache) 

Support multiply, divider (take more time) 

Run up to 150 MHz 

http://en.wikipedia.org/wiki/File:KL_Intel_P8051.jpg
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68HC11 

• Developed by Freescale 

Semiconductor (formerly 

Motorola) 

• CISC architecture 

• 8-bit microcontroller, 16-

bit address indexing 

• Widely used in Barcode-

reader, automotive 

industry, and education 

• Up to 50 MHz for 68HC12 

http://en.wikipedia.org/wiki/File:KL_Motorola_68HC11.jpg
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MAXQ 

Developed by Dallas Semiconductor 

(subsidiary from Maxim ) in 2004 

16-bit RISC architecture  

Target for low power 

Simple instruction and decoder(only mov 

instruction with accumulator) 

16 bit processor, 32 MHz 
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68000  

• 32 bit RISC 

microcontroller from 

Freescale 

• Can address 16MB of 

memory 

• 8 data register and 8 

address register 

• Can run 8 MHz – 20 

MHz 

http://en.wikipedia.org/wiki/File:KL_Motorola_MC68000_CLCC.jpg
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DSP 

• Major 3 companies 

– Texas Instrument (TMS320 series) 

–  Analog devices (SHARC) 

– Freescale semiconductor (DSP56xx) 

• Target signal processing applications  

–  Radar 

–  Speech processing 

–  Video conference 
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ARM 7 architecture 

• 32-bit RISC architecture 

 

• 3 stages pipeline: 

Fetch, Decode, Execute 

 

• Target for low power 
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ARM7 Architecture 
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ARM’s Cortex-A8 (ARMv7-A) 

• First implementation of ARMv7 ISA, including Advanced SIMD Media 
Extension (NEON) run at 600MHz – 1 GHz 

 

• In-order, dual-issue superscalar core 

– 13-stage integer pipeline 

– 10-stage NEON media pipeline 

– Dedicated L2 with 9-cycle latency 

– Branch predictor based on global history 

– NEON: 64/128-bit SIMD, 2x-4x  over prior ARMv6 SIMD 

 

• Key metrics 

– Delivers 2000 Dhrystone MIPS for next-gen consumer apps 

– Average IPC of 0.9 across benchmark suites 

• EEMBC, SpecINT95, Mediabench, and vendor apps 

– Achieve 1 GHz when fab in high performance technology 

– Less than 300mW 

– Less than 4mm2 at 65nm, excluding NEON, L2 cache, and Embedded 
Trace 

Source: Williamson of ARM at Fall processor Forum 05 
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Source: Williamson of ARM at Fall processor Forum 05 

ARM1026EJ-S™ 

2005 

D
M

IP
S

 

250 

500 

750 

ARM926EJ-S™ 

ARM11 MPCore 

1000 

ARM1176JZF-S™ 

ARM1136EJ-S™ 

Release 

Adv Development 

2000 

x4 

2006 

1500 

2500 

Pre-2005 

ARM Cortex 

“Intelligent Computing” 

Cortex-A8 "Tiger"  

ARM Core-Performance Roadmap 
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Full Cortex-A8 Pipeline Design 
13-Stage Integer Pipeline 10-Stage NEON Pipeline 

NEON

Load and store

data queue

NEON 

Instruction 

Decode

Instruction Execute and Load/Store

E1 E3 E4 M1E2 M2 M3 N1 N6N2 N3 N4 N5E5

LS pipe 0 or 1

     Instruction 

Fetch

F1 F2F0 D1 D2 D3 D4

Instruction Decode

L3 memory system

BIU pipeline

L2 Data ArrayL2 Tag Array

L1 L2 L3 L4 L5 L6 L8

L1 data cache miss

L1 instruction cache miss

Branch mispredict penalty

NEON store data

Integer register writeback

NEON register writeback

Replay penalty

A
rc

h
ite

c
tu

ra
l re

g
is

te
r file

D0 E0

L9L7
Embedded Trace Macrocell

T10T3T0 T4 T5 T6 T7 T8 T9T2T1 T11

M0

T13T12

MUL pipe 0

ALU pipe 0

ALU pipe 0

Integer ALU pipe

Integer MUL pipe

Integer shift pipe

Non-IEEE FP ADD pipe

Non-IEEE FP MUL pipe

IEEE FP engine

LS permute pipe

N
E

O
N

 re
g

is
te

r file

L2 data

External trace port

L1 data

Source: Williamson of ARM at Fall processor Forum 05 
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Control Speculation 

•  Dynamic branch predictor  
– 512-entry 2-way BTB  

– 4K-entry GHB indexed by branch 
history and PC 

– 8-entry return stack 

•  Branch resolution 
– all branches are resolved in 

single stage 

– Maintains speculative and non-
speculative versions of branch 
history and return stack 

 

Instruction Execute and Load/Store

E1 E3 E4E2 E5

Shft
ALU

+

Flags
Sat

BP 

upda

te

MUL

1

MUL

2

MUL

3
ACC

Instruction 

Fetch

F1 F2

12 entry 

fetch 

queue

F0

RAM 

+

TLB

BTB

GHB

RS

D1 D2 D3 D4

Branch mispredict 

penalty = 13 cycles

A
rc

h
ite

c
tu

ra
l re

g
is

te
r file

D0 E0

Instruction Decode

ALU/MUL pipe 0                                         
BP 

Update

AGU

ALU pipe 1

LS pipe 0 or 1

BP 

Update

BP 

Update

Source: Williamson of ARM at Fall processor Forum 05 



72 

Instruction Decode 
Instruction Execute

Instruction Decode

Integer register writeback

Pending and replay 

queue

Dec/seq
Dec 

queue 

read/write

Score-

board

+

issue

logic

Early

Dec

Early

Dec Dec

RegFile

ID

remap

Replay penalty = 9 cycles

A
rc

h
ite

c
tu

ra
l re

g
is

te
r file

E1 E3 E4E2 E5D1 D2 D3 D4D0 E0

ALU pipe 0

MUL pipe 0

ALU pipe 0

LS pipe 0 or 1

• Instruction decode highlights 
– pending queue reduces Fetch stalls and increases pairing 

opportunities 

– replay queue keeps instructions for reissue on memory system stall 

– scoreboard predicts register availability using static scheduling 
techniques  

– cross-checks in D3 allow issue of dependent instruction pairs 

 Source: Williamson of ARM at Fall processor Forum 05 
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Instruction Execution 

• Execution pipeline highlights 
– 2 symmetric ALU pipelines: Shift/ALU/SAT 

– Load/store pipe used by instructions in either pipeline 

– Multiply instructions are tied to pipe 0 

– All key forwarding paths supported 

– Static scheduling allows for extensive clock gating 

Instruction Execute

ALU pipe 1

ALU

multiply

pipe 0

Load/store

pipe 0 or 1
ALU WB

Shft
ALU

+

flags
Sat

BP 

update
WB

Shft
ALU

+

flags
Sat

BP 

update
WB

MUL

1
MUL

2

MUL

3
ACC WB

Integer register writeback

A
rc

h
ite

c
tu

ra
l re

g
is

te
r file

E1 E3 E4E2 E5E0

INST 0

INST 1

LS Pipeline

Source: Williamson of ARM at Fall processor Forum 05 
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Memory System 

Source: Williamson of ARM at Fall processor Forum 05 

LS pipeline 

 32kB 4-way set associative data cache 
(configurable) 

 Address hash array used to predict cache way 

Saves power and improves timing 

 load data forwarding in E3 to all critical sources 

 one-cycle load-use penalty for ALU  

 store data not required until E3 

 

L3

memory

system

L2 data arrayL2 tag array

Arb RAM 2
Tag

miss
Data 

format
RAM 1 RAM 2RAM 1

L1 L2 L3 L4 L5 L6 L8

RAM 3
Bank 

mux

L9L7

Load data miss

E1 E2 E3 E4 E5

LS pipeline

BIU pipeline

Load/store

pipe 0 or 1
AGU

RAM

+

TLB

Format

forward
WB

L2 

update

BIU pipeline 

 9-cycle minimum access latency to L2 cache 

 L2 built using standard compiled RAMS (64k-2MB configurable size) 

 64/128bit AXI L3 bus interface supports up to 9 outstanding transactions 
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NEON Interfaces 

 

 Skewed late in pipeline, past the retire point 

 reduces interface complexity 

 exception handling not required 

 decoupling queues from integer machine  

 removes load-use penalty 

 negative impact on NEON -> ARM transfers 

 non-blocking ARM register file helps hide latency  

 

NEON

Load

data 

queue

Instruction Execute

 and Load/Store

E1 E3 E4 M1E2 M2 M3 N1 N6N2 N3 N4 N5E5

BIU pipeline
NEON store data

ARM register writeback

E0 M0

L2 Data

L1 Data

NEON 

instruction 

queue
NEON 

Inst 

Dec

NEON Instruction Execute

ARM 

reg 

file
NEON 

reg 

file

NEON register writeback

Machine commit point

LS pipeline

ARM register writeback

Queue full

Inst 

Decode

 Streaming to and from L2 memory system 

 up to 8 outstanding transactions  

 can receive 128 bits/cycle 

 can receive data from L1 or L2 memory system 

 independent NEON store buffer 

Source: Williamson of ARM at Fall processor Forum 05 
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NEON Media Engine Unit 

 static scheduling with fire-and-forget issue 

 1 LS + 1 NINT/NFP can issue  each cycle 

 all pipelines are 64-bit SIMD 

 floating-point MAC executed using both FADD and FMUL 
pipelines 

NEON Pipeline

Load and store

with alignment

Instruction Decode

8-entry 

load queue

16 entry

Inst

Queue

Integer

ALU,

multiply,

and shift

pipes

Non-IEEE

FMAC pipe

Non-IEEE

FADD pipe

IEEE

single/double

precision VFP

Load/store

and

permute

VFP

FMUL1 FMUL 2 FMUL 3 FMUL 4 WB

FMT ALU ABS

SHIFT 1 SHIFT 2 SHIFT 3

DUP
MUL

1

MUL

2

ACC

1

ACC

2

WB

WB

FADD 1 FADD 2 FADD 3 FADD 4 WB

PERM 1 PERM 2 PERM 3
8-entry 

store 

queue
WB

Inst Dec

WB

Align

NEON register writeback

Seq

+

score-

board

Reg read

+

inst 

issue

M1 M2 M3 N1 N6N2 N3 N4 N5M0

WB

Instruction issue Execution pipelines 

Source: Williamson of ARM at Fall processor Forum 05 
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ARM’s Cortex-A9 

• Out-of-order speculative issue 

• MPCore version contain 1 to 4 cores 
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Cortex-A9‘s Accelerator Coherence 

Port (ACP) 
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Intel ATOM 

• Code names: “Silverthorne” and “Diamondville” 

 

• Design goals 
– High mobility 

– Low-power, low-power, low-power 

– Full x86 64-bit (Intel 64) compatibility 
• i.e., no software emulation, no broken legacy software 

• Support virtualization, SSSE3, SMT 

• Even run Windows Vista and definitely Linux 

• Ambitious or almost insane at the beginning 

– Of course, cost 

– Almost from a clean-slate 

• Markets 
– Netbooks (or sub-notebooks) 

– consumer electronics 

– MIDs 

Silverthorne die, 45nm 
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Non-square shape, 

suggesting future 

dual-core 
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ATOM Specifications 

Source: Microprocessor Report 

• Operating voltage: 0.75V to 1.2V 

• Test frequency up to 2 GHz 

• TDP is the worst case, Avg power and idle power are more typical 

• Points of comparison 

– Intel Celeron’s TDP was 8W to 12W for their ULV part 

– VIA’s Isaiah cannot match ATOM’s TDP 
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ATOM Fact 

• Dimension: 3.1 x 7.8 mm (24.2 mm2) 
– VIA’s Isaiah: 63 mm2  

– VIA’s Centaur C7-M: 30 mm2, previous x86 record holder  

• 47.1 million transistors @ 45nm, 9 metal layers 
– CPU core has 13.8 million transistors 

• 16 pipeline stages 

• Two-way superscalar in-order with Hyper-Threading 

• L1 caches 24 kb data cache, 32 kb instruction cache 
– 8T cell with one read port and one write port 

– Operate at lower voltage 

• L2 cache 512 kb cache 
– 6T SRAM cell 

– SECDED ECC protection implemented 

– Set associativity is programmable from 2 to 8 ways 

• FSB 
– At 400MHz or 533 MHz 

– can be shut down 
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ATOM Instruction Pipeline 

• To conserve “Power,” ATOM processor 
– Tagging boundaries in I-cache (i.e., skip variable length decoder) 

• X86 instruction can be 1 to 15 bytes 

– Decode assumes hit in the cache (otherwise, 19 stages) 

– No micro-op breakup (micro-op fusion), back to P54C 

– Discard aggressive control speculation  

• Branch misprediction penalty 13 cycles 

IF1 IF2 IF3 ID1 ID2 ID3 SC IS IRF AG DC1 DC2 EX1 FT1 FT2 WB 

Instruction 

Fetch 

Instruction 

Decode 

Instruction 

Dispatch 

D-Cache 

Access 

Exception 

& MT Handling 
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ATOM Microarchitecture 

Source: Microprocessor Report 

• HT claimed to enlarge 

silicon asset by 8% 

• Shared cache space 

deprived/competed 

between threads 

• No dedicated Multiplier 

– use SIMD Multiplier 

• No dedicated Int Divider 

- use FP Divider 
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Enhanced Speed States (C Steps) 

• 0.875V drawing less than 1W running Vista 

100 s 30 s 
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Performance Comparison 

• Webpages are on local flash (i.e., no network latency) 

• ARM11   
– fully synthesized @ 90nm 

– Lower power (0.6mW/MHz  400MHz ~ 240mW) 

• ATOM’s HT Technology 
– Improve performance by 36 to 47% 

– Worsen power by 17 to 19% 

 

Source: Microprocessor Report 

Source: Microprocessor Report 
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Question? 

 You are chosen a processor for an airbag system. The 

program has 1000 instructions. Assumed that all 

processor has same ISA and IPC of 1. Each instruction 

takes 1 byte.  The program has to finish execution within 

1ms. Which processor from below table should be used, 

assuming that all architecture is byte-accessible? 

 

   a)  PIC 8 bit processor,  32 KHz, 10 baht 

   b)  AVR 8 bit processor,   20 MHz,      50 baht 

   c)  68HC12 16 bit processor, 20 MHz, 100 baht 

   d)  ARM  32 bit processor, 500 MHz, 1000 baht 


