
1

ARM Instruction Set

2

What is an embedded system?

• Components:

– Processor(s)

– Co-processors (graphics, security)

– Memory (disk drives, DRAM, SRAM, CD/DVD)

– input (mouse, keyboard, mic)

– output (display, printer)

– network

• Our primary focus on this chapter: the processor of ARM7

(datapath and control)

– implemented using millions of transistors

– Impossible to understand by looking at each transistor

– We need...

3

Block diagram of Embedded

Systems

4

ARM Cortex-M3

Microcontroller(MCU)

5

Choosing processor

• Existing processor

 - PIC, Intel X86, Motorola 68xx

• IP based Design

– ARM

• Custom Design

– Your own Instruction set (ISA)

6

ARM history

• Found in 1990 as Advanced RISC Machine Ltd. (by
apple, Acorn and VLSI technology)

• Ship 2 billion ARM processor each year

• Doesn’t manufacture processor but license the
processor designs

• Partner companies create their processors,
microcontroller and system-on-chip solution.

• This business model is called intellectual property (IP)

7

ARM

• Was Acorn Computers, spun off in 1990 and became “Advanced

RISC Machine” (ARM)

• Start out to replace 6502 processor

• ARM1, circa 1985

• ARM2, real production, circa 1986

– 32-bit data bus

– 26-bit address space (top 6 bits used as status flag)

– 16 32-bit registers (1 PC)

– 30,000 transistors

– No microcode (remember the “R” in the acronym?)

– No cache

– Low power

• ARM3, first with 4KB Cache

• ARM6, used in Apple’s Newton

• ARM7TDMI, early most successful ARM core

8

Evolution of ARM processor Architecture

9

Architecture profile for architecture version 7

• A profile for high performance

• R profile for real-time performance

• M profile for microcontroller-type systems

10

ARM processor name

11

Instruction Set Enhancement

12

Abstraction

• Delving into the depths

reveals more information

• An abstraction omits unneeded detail,

helps us cope with complexity

• What are some of the details that

appear in these familiar abstractions?
Compiler

 …

 lw r2, mem[r7]
 add r3, r4, r2
 st r3, mem[r8]

High Level

Language

 main() {
 int i,b,c,a[10];
 for (i=0; i<10; i++)…
 a[2] = b + c*i;
}

Assembler

ISA

Machine code

13

Instructions:

• Language of the Machine

• More primitive than higher level languages
 e.g., no sophisticated control flow

• We’ll be working with the ARM instruction set architecture

Design goals: Maximize performance and Minimize cost, Reduce design time

14

• Users want large and fast memories! For example:

– SRAM access times are 700ps-1ns (1-3 cycles)

– DRAM access times are 60-100ns (100-250 cycles)

– Disk access times are ~1 million ns (~3M cycles)

• Try and give it to them anyway

– build a memory hierarchy

Exploiting Memory Hierarchy

CPU

Level n

Level 2

Level 1

Levels in the

memory hierarchy

Increasing distance

from the CPU in

access time

Size of the memory at each level

15

Model of Memory Hierarchy

Reg

File

L1

Data cache

L1

Inst cache

L2

 Cache

Main

 Memory

DISK

SRAM DRAM

16

Levels of the Memory Hierarchy

CPU Registers
100s Bytes
<10 ns

Cache
K Bytes
10-100 ns
1-0.1 cents/bit

Main Memory
M Bytes
200ns- 500ns
$.0001-.00001 cents /bit

Disk
G Bytes, 10 ms
(10,000,000 ns)

10 - 10 cents/bit

-5 -6

Capacity
Access Time
Cost

Tape
infinite
sec-min
10 -8

Registers

Cache

Memory

Disk

Tape

Instr. Operands

Cache Lines

Pages

Files

Staging
Transfer Unit

Compiler
1-8 bytes

Cache controller
8-128 bytes

Operating system
512-4K bytes

User
Mbytes

Upper Level

Lower Level

faster

Larger

17

P4: Prescott w/ 2MB L2 (90nm)

• Prescott runs very fast (3.4+ GHz)

• 2MB L2 Unified Cache

• 12K* trace cache (think “I$”)

• 16KB data cache

• Where is the cache?

• What about the similar blocks?

• Why the visual differences?

• Why is it square?

• Check this out:

– www.chip-architect.com TC

L1D

L2

18

Memory Photos

Intel Paxville (dual Core) 90nm

8-way 2MB L2 for each core

240-pin

DDR2 DRAM

19

Register file

• Fast access memory (only 1 cycle)

• Only limited number of register are

available

• Processors are commonly 8-bit, 16-bit, 32-

bit, or 64-bit, referring to the width of their

registers

20

ARM instruction

• Operand order is fixed (destination first)

Example:

 C code: A = B + C

 ARM code: add R0, R1, R2

Format:

Label

 opcode Rd, Rn, Rm …; comments

Rm can be shifted

21

ARM arithmetic

• Design Principle: simplicity favors regularity.

• Of course this complicates some things...

 C code: A = B + C + D;

 E = F - A;

 ARM code: add R0, R1, R2

 add R4, R3, R0

 sub R6, R5, R4

• Operands must be registers, 16 registers provided

• All memory accesses are accomplished via loads and stores

– A common feature of RISC processors

22

Registers vs. Memory

Processor I/O

Control

Datapath

Memory

Input

Output

• Arithmetic instructions operands must be registers,

 — only 16 registers provided

• Compiler associates variables with registers

• What about programs with lots of variables

23

Memory Organization

• Viewed as a large, single-dimension array, with an

address.

• A memory address is an index into the array

• "Byte addressing" means that the index points to a byte

of memory.

0

1

2

3

4

5

6

...

8 bits of data

8 bits of data

8 bits of data

8 bits of data

8 bits of data

8 bits of data

8 bits of data

24

Memory Organization
• Bytes are nice, but most data items use larger "words“

• ARM provides LDR/LDRH/LDRB and STR/STRH/STRHB

instructions

• For ARM, a word is 32 bits or 4 bytes.

– (Intel’s word=16 bits and double word or dword=32bits)

• 232 bytes with byte addresses from 0 to 232-1

• 230 words with byte addresses 0, 4, 8, ... 232-4

• Words are aligned

 i.e., what are the least 2 significant bits of a word address?

0

4

8

12

...

32 bits of data

32 bits of data

32 bits of data

32 bits of data

Registers hold 32 bits of data

25

Endianness [defined by Danny Cohen 1981]

• Byte ordering  How a multiple byte data word stored in memory

• Endianness (from Gulliver’s Travels)

– Big Endian

• Most significant byte of a multi-byte word is stored at the
lowest memory address

• e.g. Sun Sparc, PowerPC

– Little Endian

• Least significant byte of a multi-byte word is stored at the
lowest memory address

• e.g. Intel x86

• Some embedded & DSP processors would support both for
interoperability

26

Example of Endian

• Store 0x87654321 at address 0x0000, byte-addressable

0x87

0x65

0x43

0x21

Lower
Memory
Address

Higher
Memory
Address

0x0000

0x0001

0x0002

0x0003

BIG ENDIAN

0x21

0x43

0x65

0x87

Lower
Memory
Address

Higher
Memory
Address

0x0000

0x0001

0x0002

0x0003

LITTLE ENDIAN

27

Register and Memory Access

• In the ARM architecture
– Memory is byte addressable

– 32-bit addresses

– 32-bit processor registers

• Word addresses must be aligned, i.e., they must
be multiple of 4
– Both little-endian and big-endian memory addressing

are supported

• When a byte is loaded from memory into a
processor register of stored from a register into
the memory
– Support both little endian and big endian

28

Instructions

• Load (LDR) and store (STR) instructions

• Example:

 C code: long A[100];

 A[9] = h + A[8];

 ARM code: LDR R0, [R3,32]

 ADD R0, R2, R0

 STR R0, [R3,36]

• Store word has destination last

• Remember arithmetic operands are registers, not

memory!

32 bits of data

32 bits of data

32 bits of data

32 bits of data

A[0]

A[1]

A[2]

4 bytes

29

Load/Store Word

STR R0, [R1]

LDR R2,[R1]

30

Our First Example

swap(int v[], int k);

{

int temp;

 temp = v[k]

 v[k] = v[k+1];

 v[k+1] = temp;

}

swap:

 mul r2, r5, 4

 add r2, r4, r2

 ldr r5, [r2,0]

 ldr r6, [r2,4]

 str r6, [r2,0]

 str r5, [r2,4]

 mov PC, r14

31

So far we’ve learned:

• ARM
 — loading words but addressing bytes
 — arithmetic on registers only

• Instruction Meaning

add r1, r2, r3 r1 = r2 + r3

sub r1, r2, r3 r1 = r2 – r3

ldr r1, [r2,100] r1 =Memory[r2+100]

str r1, [r2,100] Memory[r2+100]=r1

32

Machine Language

• Instructions, like registers and words of data, are also 32 bits long

– Example: add r0, r1, r2

– registers have values, r0=9, r1=17, r2=18

• Instruction Format:

cond 001 OPCODE rn rd rs 0shift 1 rm

 0000 001 01001 0001 0000 0000 0 00 1 0010

33

Register Structure

34

Registers in ARM

35

Register structure

• There are 15 additional general-purpose

registers called the banked registers
– They are duplicates of some of the R0 to R14

registers

– They are used when the processor switches into

supervisor or interrupt modes

• Saved copies of the status register are

also available in the supervisor or interrupt

modes

36

Processor mode

37

Register file structure

38

Special registers

• Program Status Registers (PSRs)

• Interrupt Mask Registers

• Control Registers (Control)

39

Special Registers

40

Status Register

41

Questions?

• What registers are used to store the

program counter and link register?

• What is r13 often used to store?

42

ARM Instruction Format

• Each instruction is encoded into a 32-bit word

• Access to memory is provided only by Load and Store
instructions

• The basic encoding format for instructions such as
Arithmetic, and Logic function is shown below

• An instruction specifies a conditional execution code
(Condition), the OP code, two or three registers (Rn, Rd,
and Rm) and some other information

43

Conditional Execution of Instructions

• A distinctive and somewhat unusual feature of
ARM processors is that all instructions are
conditionally executed
– Depending on a condition specified in the instruction

• The instruction is executed only if the current
state of the processor condition code flag
satisfies the condition specifies in bit b31-b28 of
the instruction
– Thus the instructions whose condition is not meet the processor

condition code flag are not executed

• One of the conditions is used to indicate that the
instruction is always executed

44

Example of conditional execution

SUB R3, R10, R5

SUBNE R3, R10, R5

SUBS R3, R10, R5

SUBNES R3, R10, R5

45

Conditional execution

46

Modifier

• S modifier: update condition flags (cmp

instruction doesn’t require this flag)

• R modifier: round to the nearest, otherwise

truncate

47

Arithmetic Instructions

• The basic expression for arithmetic instructions is
 OPcode Rd, Rn, Rm

• For example, ADD R0, R2, R4
 Performs the operation R0􀃅 = R2+R4

• SUB R0, R6, R5
 Performs the operation R0 =􀃅 R6-R5

• Immediate mode: ADD R0, R3, #17
 Performs the operation R0 =􀃅 R3+17

• The second operand can be shifted or rotated before
being used in the operation

 For example, ADD R0, R1, R5, LSL #4 operates as follows: the
second operand stored in R5 is shifted left 4-bit positions (equivalent
to [R5]x16), and its is then added to the contents of R1; the sum is
placed in R0

48

Logic Instruction

• The logic operations AND, OR, XOR, and Bit-Clear are implemented
by instructions with the OP codes AND, ORR, EOR, and BIC.
For example

 AND R0, R0, R1: performs R0􀃅 = R0 & R1

• The Bit-Clear instruction (BIC) is closely related to the AND
instruction.

 It complements each bit in operand Rm before ANDing them with the
bits in register Rn.

 For example, BIC R0, R0, R1. Let R0=02FA62CA, R1=0000FFFF.
Then the instruction results in the pattern 02FA0000 being placed in R0

• The Move Negative instruction complements the bits of the source
operand and places the result in Rd. For example, MVN R0, R3

49

Barrel shifter

• There is no shift instruction in ARM

• Instead, it provides the barrel shifter to

carry out shift operations as part of other

instructions

50

Barrel shifter –left shift

• Shift left by specific amount

 e.g. LSL #5 = multiply by 32

51

Barrel shifter –right shift

• Logical shift right

 e.g. LSR # 5 =

 divided by 32

• Arithmetic shift right

 e.g. ASR #5 =

 divided by 32 and

preserve the sign bit

52

Barrel shifter –rotate right

• Rotate right

 similar to shifter but

wrap around LSB bit

ROR #5

• Rotate right extended

Use C flag as 33 bits

RRX #5

53

Barrel shifter

If R1 = 0x 0012, what is the value of R6 and R9?

MOV R6, R1

MOV R6, R1, LSL #3

MOV R9, #3

MOV R6, R1, LSL R9

54

Barrel shift operation

55

Example

• What is the meaning of below instruction?

 ADD r3, r2, r1, LSL #3;

If r1 = 0x0010

 r2 = 0x0001

 r3 = 0x0100

56

Branch Instruction

• Conditional branch instructions contain a signed 24-bit offset that
is added to the updated contents of the Program Counter to
generate the branch target address

• The format for the branch instructions is shown as below

􀃅

• Offset is a signed 24-bit number. It is shifted left two-bit positions
(all branch targets are aligned word addresses), signed extended
to 32 bits, and added to the updated PC to generate the branch
target address

• The updated points to the instruction that is two words (8 bytes)
forward from the branch instruction

57

ARM Branch Instructions

• The BEQ instruction (Branch if Equal to 0)

causes a branch if the Z flag is set to 1

• Branch relative address is with current PC + 8

58

Setting Condition Codes

• Some instructions, such as Compare, given by

 CMP Rn, Rm which performs the operation Rn-Rm have
the sole purpose of setting the condition code flags
based on the result of the subtraction operation

• The arithmetic and logic instructions affect the condition
code flags only if explicitly specified to do so by a bit in
the OP-code field. This is indicated by appending the
suffix S to the OP-code

 For example, the instruction ADDS R0, R1, R2 set the condition
code flags

 But ADD R0, R1, R2 does not

59

Assembly Language

• An EQU directive can be used to define symbolic names
for constants

• For example, the statement

 TEN EQU 10

• When a number of registers are used in a program, it is
convenient to use symbolic names for them that relate to
their usage

 The RN directive is used for this purpose

 For example, COUNTER RN 3 establishes the name COUNTER for register
R3

• The register names R0 to R15, PC (for R15), and LR(for

R14) are predefined by the assembler

 R14 is used for a link register (LR)

60

Questions?

• Specify ARM assembly instruction to do

the following:

– R0 = 16

– R1 = R0 *4

– R0 = R1 /16 (maintain the sign bit)

– R1 = R2*5

61

Questions?

Assume that r0 = 32, r1 = 1

• What will the following instructions do?

– ADDS r0, r1, r1, LSL #2

– SUB r0, r0, r1, LSL #4

62

Memory Addressing Modes

• Pre-indexed mode
– The effective address of the operand is the sum of the contents

of the based register Rn and an offset value

• Pre-indexed with writeback mode (auto-
indexing)
– The effective address of the operand is generated in the same

way as in the Pre-indexed mode, and then the effective address
is written back into Rn

• Post-indexed mode
– The effective address of the operand is the contents of Rn. The

offset is then added to this address and the result is written back
into Rn

63

Name Assembly Addressing

function
With immediate offset:

Pre-indexed [Rn,#offset] EA=mem [Rn+offset]

Pre-indexed with
writeback

[Rn,#offset]! EA=mem [Rn+offset];

Rn = Rn + offset;

Post-indexed [Rn],#offset EA= mem [Rn];

Rn = Rn + offset;

With offset and Rm

Pre-indexed [Rn,Rm,#offset] EA= mem[Rn  Rm+offset];

Pre-indexed with
writeback

[Rn,Rm,#offset]! EA= mem[Rn  Rm+offset];

Rn = Rn  Rm + offset

Post-indexed [Rn],Rm,#offset EA= mem[Rn];

Rn = Rn  Rm + offset

Relative Location EA = Location

 = [PC] + offset

64

Pre-Indexed Addressing Mode

100 R3

100

65

Pre-Indexed Addressing with Writeback

2008

66

Post-Indexed Addressing

1100

100 R1 6

67

Relative Addressing Mode

The operand must be within the range of 4095 bytes forward or
backward from the updated PC

68

Memory instructions

69

Addressing mode

70

Example

LDR r12, [r0,+r7]

LDR r12, [r0,-#0x6A0]!

STR r12, [r0], +#0x6A0

STRH r12,[r0,+r7]!

LDR r12, [r0, -r7, LSL #3]

LDREQ r12, [r0, -r7, LSL #3]

71

Load/Store Multiple operands

• In ARM processor, there are two instructions for
loading and storing multiple operand
– They are called Block transfer instructions

• Only word operands are allowed, and the OP
codes used are LDM and STM

• The memory operands must be in successive
word locations

• All of the forms of pre- and post-indexing with
and without writeback are available

• They operate on a Base register Rn specified in
the instruction and offset is always 4

72

Multiple load/store

LDM : load multiple registers

SDM : store multiple registers

E.g. :

 LDMIA R10, {r0-r3}

 LDMIA R10!, {r0-r3}

73

Example

• LDMIA R10, {r0-r1}

R10 = 2004

• LDMDB R10, {r0-r1}

28

26 2004

2000 25

74

Operations

75

Stack operations

• Full ascending (FA) is equivalent to IB

mode

• Full Descending (FD) is equivalent to DB

mode

• Empty ascending (EA) is equivalent to IA

mode

• Empty Descending (ED) is equivalent to

DA mode

76

Example of stack instruction

STMFD SP!, {r7-r10}

77

An Example of Adding Numbers

(sum from 0 to N-1)

 MOV R1, #N Move count into R1

 LDR R2, POINTER Load address NUM1 into R2

 MOV R0, #0 Clear accumulator R0

Loop LDR R3, [R2], #4 Load next number into R3

 ADD R0, R0, R3 Add number into R0

 SUBS R1, R1, #1 Decrement loop counter R1

 BGT LOOP Branch back if not done

 STR R0, SUM Store sum

Assuming that the memory location POINTER, and SUM are within the
range reachable by the offset relative to the PC

GT: signed greater than

BGT: Branch if Z=0 and N=0

78

Questions?

• Write a segment of ARM code that add together

 element x till element x+(n-1)

• The segment should use post-indexed

• Each element is word size

• Assume that

r0 point to the start of array

r1 = x

r2 = n

Lower address

Higher address

79

Sample solution

80

Subroutines

• A Branch and Link (BL) instruction is used to call

a subroutine

• The return address is loaded into register R14,

which acts as a link register

• When subroutines are nested, the contents of

the link register must be saved on a stack by the

subroutine.

 Register R13 is normally used as the pointer for this stack

• Return to the main code by MOV PC, R14

81

Example

Calling program

 LDR R1, N

 LDR R2, POINTER

 BL LISTADD

 STR R0, SUM

 .

 .

 .

Subroutine

LISTADD STMFD R13!, {R3, R14} Save R3 and return address in R14 on stack,
 using R13 as the stack pointer

 MOV R0, #0

LOOP LDR R3, [R2], #4

 ADD R0, R0, R3

 SUBS R1, R1, #1

 BGT LOOP

 LDMFD R13!, {R3, R15} Restore R3 and load return address into PC (r15)

82

Example of finding minimum

number subroutine

min routine:

 if(x<= y) return x;

 else return y;

83

Solution

ldr r0, x

ldr r1, y

bal min

str r0, result

min: cmp r0, r1

 movgt r0, r1

 mov PC, r14

84

Questions?

• What does this

program do?

• Convert it into ARM

assembly code?

• Convert it into ARM

assembly using

conditional

execution?

85

Solution 1

86

Solution 2

87

Byte-Sorting Program

for (j=n-1; j>0; j=j-1)

 {

 for (k=j-1; k>=0; k=k-1)

 {

 if (LIST[k]>LIST[j])

 {

 TEMP=LIST[k];

 LIST[k]=LIST[j];

 LIST[j]=TEMP;

 }

 }

 }

88

Byte-Sorting Program

 ADR R4,LIST Load list pointer register R4

 LDR R10,N Initialize outer loop base

 ADD R2,R4,R10 Register R2 to LIST+n

 ADD R5,R4, #1 Load LIST+1 into R5

OUTER LDRB R0,[R2,# -1]! Load LIST(j) into R0

 MOV R3,R2 Initialize inner loop base
 register R3 to LIST+n-1

INNER LDRB R1,[R3, # -1]! Load LIST(k) into R1

 CMP R1,R0 Compare LIST(k) to LIST(j)

 If LIST(k)>LIST(j),
 STRGTB R1,[R2] interchange LIST(k) and LIST(j)

 STRGTB R0,[R3]

 MOVGT R0,R1 Move (new) LIST(j) into R0

 CMP R3,R4 If k>0, repeat

 BNE INNER innerloop

 CMP R2,R5 If j>1, repeat

 BNE OUTER outerloop

89

ARM instruction set

• Data Processing Instructions

• Load/Store Instructions

• Branch Instructions

• Control Instructions

90

Data Processing Instructions

• Move

• Arithmetic

91

Data processing Instructions

• Logical operations

• Compare operations

92

Data processing instructions

• Multiplications

93

Format of data processing instruction

94

Load/Store instructions

95

Load/store instruction format

96

Branch instruction format

97

Control instruction format

98

Switching between ARM code and

thumb mode

99

Basic concept of Stack

100

Push-Pop instruction

101

Sub-routine call

For BX instruction, If bit 0 of r14 is 1, then execute Thumb

instructions. Otherwise, execute ARM instructions.

102

Using Link Register

103

Stack operation

104

ARM System vectors

105

Reset sequence

106

Memory map

