ARM Instruction Set

What Is an embedded system?-~

Components:

— Processor(s)

— Co-processors (graphics, security)

— Memory (disk drives, DRAM, SRAM, CD/DVD)
— Input (mouse, keyboard, mic)

— output (display, printer)

— network

Our primary focus on this chapter: the processor of ARM7
(datapath and control)

— Implemented using millions of transistors
— Impossible to understand by looking at each transistor
— Weneed...

Block diagram of Embedded

Systems

Temperature, light,

acceleration, vibration, . 'T
Eoee g 1 101 I o
magnetic field

Sensors

Switches, buttons, motors, +———=
on/foff controls, digital interfacing -—

Hast computer .’!]:- a—
e

Simple networks, other computers, — -
Infrared communitcations (D) *—— Bus interface

Disk drives, audio, analog in, analog _
out, parallel (digital) /0, etc. | —

Hetwork

Kon-volatile memory, cdock/
calendars, serial interfaces,
digital sensors, analog in/
analeg out, digital audio,
Otherprocessors

Non-volatile memory, volatile

memaory, dock/calendars,
analeg infanalog out

—» Motors, digital pulses,

Event counts

1 Memaory

interfaces Host computers

ARM Cortex-M3
Microcontroller(MCU)

ON0OO0O0O000O000O000On00n0nnnn

minininEsEnNsininininininEsEnEsEninln
Cortax-M3 Chip
Corex-M3 Dabug Déﬁiﬂﬁpﬁ d by
Core | Syslem —T
T =
Internal Bus n
4 b 4 b g
Feripherals Memory 3 Developead by
= chip
g manufacturars
Clock and . m
Resat o =
n

(ENE NN NI E SN NN NN NS NNy Ny

Choosing processor

» EXisting processor
- PIC, Intel X86, Motorola 68xx

* |P based Design
— ARM

* Custom Design
— Your own Instruction set (ISA)

ARM history

Found in 1990 as Advanced RISC Machine Ltd. (by
apple, Acorn and VLSI technology)

Ship 2 billion ARM processor each year

Doesn’t manufacture processor but license the
processor designs

Partner companies create their processors,
microcontroller and system-on-chip solution.

This business model is called intellectual property (IP)

ARM

« Was Acorn Computers, spun off in 1990 and became “Advanced
RISC Machine” (ARM)

« Start out to replace 6502 processor
« ARM], circa 1985
« ARMZ2, real production, circa 1986
— 32-bit data bus
— 26-bit address space (top 6 bits used as status flag)
— 16 32-bit registers (1 PC)
— 30,000 transistors
— No microcode (remember the “R” in the acronym?) fEfevpdyaazaaaiaats
— No cache
— Low power
 ARMS, first with 4KB Cache
 ARMBG, used in Apple’s Newton
« ARMY7TDMI, early most successful ARM core

Architescture
T

Architecturs Architesctura

I |

: VENGE V6 |

I I vT-A (Application;
| | & &.0., Cortex-AR)
| |

I | v7-R (Real-Time:;
: | e.0., Cortex-R4)
1 |

e | Vi
i ARM 1138 . {Microcontroller;
l |
] |
I |
| |
] |
I |
| |
] |
! |

Architecturs
wvdiedT

1176, e.g.. Cortex-M3)
046, 9ae,
Intel XScale

ARM 7TTDMI,
Examples E:IE.I,?;:
StrongaRM

* A profile for high performance
* R profile for real-time performance

* M profile for microcontroller-type systems

ARM processor name

Processar Marme

Archicecture Yersion

Memory Management Features

Cicher Features

ARBATTOA ARRLAT

ARMITDM 1S ARMAT

ARMFEI-S ARMSE CSP, Jazelle
ARME2OT ARMAT rARALI

ARMBZIT ARMAT rARALL

ARME2GE]S ARMSE rARALI CEP, Jazelle
ARMBISE-S ARMWSE rPL CskE
ARMSESE-S ARMKWSE CsP
ARMBGRE-S ARMKSE CsAA, DSP
ARMIESHS ARMVSE MPU {opeicnal) DSP

ARMI O20E ARMSE rARALI Csp
ARMID22E ARMSE rARALL CsP

ARMI O26E-5 ARMSE FARALL 2 BAPL CEP, Jazelle
ARMITIGNFIS ARMS BARALI DSP, Jazelle
ARMINTS[ZIFIS ARMWS MMU + TruseZone DSP, Jazelle
ARMIT MPCore ARMWS FARAL + mulciprocessor cache suppore OGP, Jazelle
ARBMIISETEF-S ARMS BAPLI CsP
Cortes-t3 ARM -5 FAPLI { cpeicnal y MYIC
Cortew-Rd ARBTF-R BAPLI CsP
Corex-R4F ARMT-RE rAPL CSP + Floating poine
Cortex-A8 ARMeT-A rMLU + TrusiZore CEP, Jazelle

10

Instruction Set Enhancement

AR

Thumb

Wi waT] WSE vE w7
SO, W
Enhanced ATy
_— DEP & rt
Iretrucions ;!:lgj
acdded
Y Thiurnb-2
IreEmuc o
oy ced
Fruttr
IrEtmacicna
Infrceducad

Architachure developmenil

11

Abstraction

: main() { . Delving into the depths
ngh Level int i,b,c,a[10]; € 9 i P]
reveals more information

Language for (i=0=; i<10;>:_-|.-+)...
el =bx .« An abstraction omits unneeded detail,
helps us cope with complexity

}
« What are some of the detalls that
appear in these familiar abstractions?

Iw r2, mem[r7]
add r3, r4, r2)
st r3, mem[r8] Machine code

h g o a
Assembler

ISA

| 1o \
"°~\~\\“A-\
. < W5
12

Instructions:

« Language of the Machine

* More primitive than higher level languages
e.g., ho sophisticated control flow

« We'll be working with the ARM instruction set architecture

Design goals: Maximize performance and Minimize cost, Reduce design time

13

Exploiting Memory Hierarchy

Users want large and fast memories! For example:
— SRAM access times are 700ps-1ns (1-3 cycles)
— DRAM access times are 60-100ns (100-250 cycles)
— Disk access times are ~1 million ns (~3M cycles)

CPU

Try and give it to them anyway I
— build a memory hierarchy el increasing distance

from the CPU in O

access time
Levels in thed Level 2
memory hierarchy/ \
/ Level n \
v

Size of the memory at each level

14

DRAM

Viain:

VIEMOLY, ~I

Inst cache

15

Levels of the Memory Hierarchy

Xapacit)fr Staging Upper Level

ccess Time

Cost Transfer Unit + faster

CPU Registers Registers

iggs Bytes - c '

ns Instr. Operands 1'8 bytes

Cache M

K Bytes

10-100 ns Cache

1-0.1 cents/bit 3 _ Cache controller
Cache Lines 8-128 bytes

Main Memory E

M Bytes

200ns- 500ns _ Memory

$.0001-.00001 cents /bit ry Operating system

Disk Pages 512-4K bytes

G Bytes, 10 ms i

(10,000,000 ns) Disk

10> 16%ents/bit r User Il
Files Mbytes

Tape v Larger

infinite

sec-min Tape Lower Level

10 -8 16

&
-
o
o
)
o
_
an
>
N
~
=
£
O
O
N
O
.S
al

P4

~
N
L
O
+
N
™
e
]
7))
©
€t
P
S
b
>
7))
c
>
S
=
@
o
7p)
)
S
al

Why the visual differences?

What about the similar blocks?
Why is it square?

12K* trace cache (think “I$”)

2MB L2 Unified Cache
16KB data cache

Where is the cache?

Check this out:

www.chip-architect.com

17

el

Intel Paxville (dual Core) 90nm

8-way 2MB L2 for each core

240-pin
DDR2 DRAM

18

Register file

« Fast access memory (only 1 cycle)

* Only limited number of register are
available

* Processors are commonly 8-bit, 16-bit, 32-
bit, or 64-bit, referring to the width of their
registers

19

ARM Instruction

* Operand order is fixed (destination first)
Example:

C code: A<AB\+AC\

ARM code: add RO, R1l, R2
Format:
Label

opcode Rd, Rn, Rm ...; comments

Rm can be shifted

20

ARM arithmetic

« Design Principle: simplicity favors regularity.
« Of course this complicates some things...

C code: A =B + C + D;
TN
ARM code: add R R1, R2

add R4,\R3, RO
sub R6, R5, R4

 Operands must be registers, 16 registers provided
« All memory accesses are accomplished via loads and stores
— A common feature of RISC processors

21

Registers vs. Memory

« Arithmetic instructions operands must be registers,
— only 16 regqisters provided

« Compiler associates variables with registers
« What about programs with lots of variables

Control

Datapath

Processor

22

Memory Organization

Viewed as a large, single-dimension array, with an
address.

A memory address is an index into the array

"Byte addressing" means that the index points to a byte
of memory.

8 bits of data

8 bits of data

8 bits of data

8 bits of data

8 bits of data

8 bits of data

o O & WO N L O

8 bits of data

23

Memory Organization

Bytes are nice, but most data items use larger "words”
ARM provides LDR/LDRH/LDRB and STR/STRH/STRHB

Instructions

For ARM, a word is 32 bits or 4 bytes.
— (Intel's word=16 bits and double word or dword=32bits)

0
4
8
12

32 bits of data

32 bits of data

32 bits of data

32 bits of data

Registers hold 32 bits of data

232 pytes with byte addresses from 0 to 232-1
230 words with byte addresses 0, 4, 8, ... 232-4
Words are aligned

l.e., what are the least 2 significant bits of a word address?

24

Endianness [defined by Danny Cohen 1981

Byte ordering — How a multiple byte data word stored in memory
Endianness (from Gulliver’s Travels)
— Big Endian
* Most significant byte of a multi-byte word is stored at the
lowest memory address
 e.g. Sun Sparc, PowerPC
— Little Endian

« Least significant byte of a multi-byte word is stored at the
lowest memory address

* e.g. Intel x86

Some embedded & DSP processors would support both for
Interoperability

25

Example of Endian

e Store 0x87654321 at address 0x0000, byte-addressable

0x0000 — Ox87 Lower 0x0000 — Ox21 Lower
Memory Memory
0x0001 — 0X65 Address 0x0001 —»| 0x43 Address
0x0002 —» 0x43 0x0002 —» Ox65
0x0003 — Ox21 0x0003 — 0x87
(@) (@)
(@) (@)
(@) (@)
(@) (@)
(@) (@)
° \ 4 ° \ 4
o Higher o Higher
Memory Memory
° Address ° Address

BIG ENDIAN LITTLE ENDIAN 26

 |In the ARM architecture

— Memory is byte addressable
— 32-bit addresses

— 32-bit processor registers

« Word addresses must be aligned, I.e., they must
be multiple of 4

— Both little-endian and big-endian memory addressing
are supported

 When a byte Is loaded from memory into a

processor register of stored from a register into
the memory

— Support both little endian and big endian

27

Instructions

- _ 4 bytes
 Load (LDR) and store (STR) instructions A[O]_,‘32 —

« Example: ALl ot

A[Z] »| 32 bits of data

C code: long A[100];
A[9] = h + A[8];

l

ARM code: LDR RO, \[R3,32]
ADD RO, R2, RO
STR RO, [R3,36]

32 bits of data

 Store word has destination last

« Remember arithmetic operands are registers, not

memory! *

Load/Store Word

STR RO, [R1]
LDR R2,[R1]

ro Memory
Source 1
Register L[0X3 |
for STR I

r r2 L
Base Destination

Register 0x200 B —> 0x200 0x5 —_— 0x5 Register
for LDR

29

Our First Example

swap (int v[]

{

int temp;
temp =
vik] =
v[k+1]

v([k]
vik+1l];
= temp;

-

add
ldr
ldr
str
str
mov

int k) swap:
)m»rS, 4

r25>rd, r2
r5, [r2,0]
r6, [r2,4]
r6, [r2,0]
r5, [r2,4]

PC, rl4

30

So far we’ve learned:

ARM
— loading words but addressing bytes
— arithmetic on registers only

Instruction Meaning

add rl, r2, r3 rl = r2 + r3

sub rl, r2, r3 rl = r2 - r3

1dr rl, [r2,100] rl =Memory[r2+100]

str rl, [r2,100] Memory[r2+100]=rl

31

Machine Language

Instructions, like registers and words of data, are also 32 bits long

— Example:
— registers have values, r0=9, rl1=17, r2=18

add roQ0,

Instruction Format:;

rl,

r2

cond

001

OPCODH

rn

rd

rs

shift

rm

0000

001

01001

0001

0000

0000

00

0010

32

Register Structure

31 0 A
RO
Rl
15
. } General
. Pu.17|:u:|5e
registers
Fl4
”
31 0
R15 (PC) Program counter
31 30 29 25 T b 4 0
CPSR var Status register
N-Negative — [
Z-Zero ——
C-Canry Processor mode bits
1"—D1;erf1m*.-; . Interrupt disable bits

Conditional code] ags

33

Registers in ARM

Name Functions {and Banked Registers)
RO General-Purpose Register)
R General-Purpose Register
R2 General-Purpose Register
R3 General-Purpose Registar .
R4 General-Purpose Register P Low Registers
RS General-Purpose Register
RE General-Purpose Register
R7 General-Purpose Register)
RE General-Purpose Registar)
RO General-Purpose Register
R10 General-Purpose Registar * High Registers
Ri1 General-Purpose Register
Ri2 General-Purpose Registar
R13 (M5P) R13 (P5P) Main Stack Pointar (MSP), F"rc::;sr; Stack Pointar (PSP
Ri4 Link Register (LR)
R15 Program Counter {PC)

34

Register structure

* There are 15 additional general-purpose

registers called the banked registers

— They are duplicates of some of the RO to R14
registers

— They are used when the processor switches into
supervisor or interrupt modes

« Saved copies of the status register are
also available in the supervisor or interrupt
modes

35

Processor mode

Mode Abbreviation Privileged Mode bits[4:0]
Abort abt Ves 1 01 11
Fast Interrupt Request fig ves 1 0001
Interrupt Request irg Ves 10010
Supervisor Ve ves 1 00 11
Systemn 5¥S ves 1 1111
Undefined und Ves 1 1 011
User usr no 1 0000

36

Register file structure

Lzar and
Systam

o

r

rz

ra

r4

5 Fast

[F Irtamrupt

T Raquast

ra ra_fiq

s ra_fiq

F10 r10_fiq

1 r11_fig Intarrupt

Fi2 F12_fig Requast Suparvisor Undefined Abort
ra sp r12_fig r14_irg M4_sve rd_und| [rid_abt
ri4 Ir r14_fiq r15_irq M5_sve MS_und| [r15_abt
s pec

cpsr

—_ spsr_fiq spar_irg | [spsr_sve| (|spsr_und| [spsr_abt

37

Special registers

* Program Status Registers (PSRSs)
* Interrupt Mask Registers

« Control Registers (Control)

38

Special Registers

Name

xP3R

PRIMASK

FALLTMASK

BASEPRI

CONTROL

Functions

Program Status Registars

Intermupt Mask
Registers

Contral Register

e Special

Registers

39

Status Register

FLAGS STATUS EXTENSION COMTROL
A A A M
. il b o ™
31 30 208 28 27 a7 6 5 43 210 BITS
NIZ|C|V RESERVED L{FIT
i A
e >
INTERRL F'T,_//' PROCESSOR
MASKS MODE

THLIME

40

Questions?

* What registers are used to store the
program counter and link register?

« What iIs r13 often used to store?

41

ARM Instruction Format

Each instruction is encoded into a 32-bit word

Access to memory is provided only by Load and Store
Instructions

The basic encoding format for instructions such as
Arithmetic, and Logic function is shown below

3l 25 7 2019 1615 1211 2 3 0

Em

Condition P code En | Ed Cither info

An instruction specifies a conditional execution code
(Condition), the OP code, two or three registers (Rn, Rd,
and Rm) and some other information

42

A distinctive and somewhat unusual feature of
ARM processors is that all instructions are
conditionally executed

— Depending on a condition specified in the instruction

The instruction is executed only If the current
state of the processor condition code flag
satisfies the condition specifies in bit b31-b28 of
the Instruction

— Thus the instructions whose condition is not meet the processor
condition code flag are not executed

One of the conditions is used to indicate that the
Instruction Is always executed

43

Example of conditional execution ==

SUB R3, R10, R5
SUBNE R3, R10, R5
SUBS R3S, R10, R5

SUBNES R3, R10, R5

44

Conditional execution

Code Description Flags OP-Code[31:28]
EQ) Equal to zero =1 0000
NE Not equal to zero =10 0001

CSHS | Carry set / unsigned higher or the same C=1 0010

CC L0 Carry cleared / unsigned lower Z =1 0011
M Negative or minus N=1 017 00
Pl FPositive ar plus N=0 g1 01
A Chverflow set V=1 g1 10
Vi Overflow cleared V=10 g1 11
Hi unsigned higher Z*C 000
L5 unsigned lower or the same Z+C 1 001
(GE signed greater than or equal (IN*V) + (N*V) 1 010
LT signed less than N xor V' I Q1 1
T signed greater than (N*Z*\) + (N*Z2*TV) 11 00
LE signed less than or equal £+ (N xor V) I 1 01
Al alwavs {unconditional) not used I 1 1 0
NV never (uncondifional) not used 1 11

45

Modifier

* S modifier: update condition flags (cmp
instruction doesn’t require this flag)

R modifier: round to the nearest, otherwise
truncate

46

Arithmetic Instructions

The basic expression for arithmetic instructions is
OPcode Rd, Rn, Rm

For example, ADD RO, R2, R4
Performs the operation ROC] = R2+R4

SUB RO, R6, R5
Performs the operation RO =[] R6-R5

Immediate mode: ADD RO, R3, #17
Performs the operation RO =[1 R3+17

The second operand can be shifted or rotated before
being used in the operation

For example, ADD RO, R1, R5, LSL #4 operates as follows: the
second operand stored in R5 is shifted left 4-bit positions (equivalent
to [R5]x16), and its is then added to the contents of R1; the sum is
placed in RO

a7

Logic Instruction

The logic operations AND, OR, XOR, and Bit-Clear are implemented
by instructions with the OP codes AND, ORR, EOR, and BIC.

For example
AND RO, RO, R1: performs ROJ =R0 & R1

The Bit-Clear instruction (BIC) is closely related to the AND
Instruction.

It complements each bit in operand Rm before ANDing them with the
bits in register Rn.

For example, BIC RO, RO, R1. Let RO=02FA62CA, R1=0000FFFF.
Then the instruction results in the pattern 02FA0000 being placed in RO

The Move Negative instruction complements the bits of the source
operand and places the result in Rd. For example, MVN RO, R3

48

Barrel shifter

 There Is no shift instruction iIn ARM

* Instead, it provides the barrel shifter to

carry out shift operations as part of other
Instructions

49

Barrel shifter —left shift

 Shift left by specific amount
e.g. LSL #5 = multiply by 32

Logical Shift Left (LSL)

CF (< Destination < 0

50

Barrel shifter —right shift

 Logical shift right
e.g. LSR#5=
divided by 32

Logical Shift Right

Y

.0 —> Destination CF

 Arithmetic shift right
eg ASR #5 — Arithmetic Shift Right
. B
divided by 32 and T Destination | cr
preserve the sign bit

51

Barrel shifter —rotate right

« Rotate right

similar to shifter but
wrap around LSB bit

ROR #5

« Rotate right extended
Use C flag as 33 bits
RRX #5

Rotate Right
—>| Destination > CF
Rotate Right through Carry
—>| Destination — > CF

52

Barrel shifter

If R1 = 0x 0012, what is the value of R6 and R9?
MOV RG6, R1

MOV R6, R1, LSL #3

MOV R9, #3

MOV R6, R1, LSL R9

53

Barrel shift operation

Mnemonic Operation Shift Amount
L51 Logical Shift Left F0-31, or reqister
L5R Logical Shift Right F1-32, or reqister
ASR Arithmetic Shift Right ¥1-32, or reqgister
ROR Rotate Right F1-32, or reqister
RRX Rotate Right Extended 33

54

Example

« What is the meaning of below instruction?
ADD r3, r2, rl, LSL #3;

If r1 = Ox0010

r2 = 0x0001
r3 =0x0100

55

Branch Instruction

Conditional branch instructions contain a signed 24-bit offset that
Is added to the updated contents of the Program Counter to
generate the branch target address

The format for the branch instructions is shown as below

31 x5 27 24 X3 4]

Condiftion OFP cods offset

Offsetis a signed 24-bit number. It is shifted left two-bit positions
(all branch targets are aligned word addresses), signed extended
to 32 bits, and added to the updated PC to generate the branch
target address

The updated points to the instruction that is two words (8 bytes)
forward from the branch instruction

56

ARM Branch Instructions

« The BEQ instruction (Branch if Equal to 0)
causes a branch ifthe Zflag is setto 1

 Branch relative address is with current PC + 8

1000 BEQ LOCATION
1004

T Updated [PC]=1008

Offset=02
|

— LOCATION=1100 Branch target instruction

S7

Setting Condition Codes

« Some instructions, such as Compare, given by

CMP Rn, Rm which performs the operation Rn-Rm have
the sole purpose of setting the condition code flags
based on the result of the subtraction operation

« The arithmetic and logic instructions affect the condition
code flags only if explicitly specified to do so by a bit in
the OP-code field. This is indicated by appending the
suffix S to the OP-code

For example, the instruction ADDS RO, R1, R2 set the condition
code flags

But ADD RO, R1, R2 does not

58

Assembly Language

 An EQU directive can be used to define symbolic names
for constants

* For example, the statement
TEN EQU 10

« When a number of registers are used in a program, it is
convenient to use symbolic names for them that relate to
their usage

The RN directive is used for this purpose

For example, COUNTER RN 3 establishes the name COUNTER for register
R3

« The register names RO to R15, PC (for R15), and LR(for
R14) are predefined by the assembler
R14 is used for a link register (LR)

59

Questions?

« Specify ARM assembly instruction to do
the following:
— RO =16
—~R1=R0 *4
— RO = R1 /16 (maintain the sign bit)
—R1 =R2*5

60

Questions?

AssumethatrO0 =32, r1 =1

« What will the following instructions do?
— ADDS 10, rl, rl, LSL #2
-SUB 10, r0, r1, LSL #4

61

Memory Addressing Modes

* Pre-indexed mode

— The effective address of the operand is the sum of the contents
of the based register Rn and an offset value

* Pre-indexed with writeback mode (auto-
iIndexing)

— The effective address of the operand is generated in the same
way as in the Pre-indexed mode, and then the effective address
IS written back into Rn

 Post-indexed mode

— The effective address of the operand is the contents of Rn. The
offset is then added to this address and the result is written back
Into Rn

62

Name

Assembly

Addressing
function

With immediate offset:

Pre-indexed

[Rn,#offset]

EA=mem [Rn+offset]

Pre-indexed with
writeback

[Rn,#offset]!

EA=mem [Rn+offset];
Rn = Rn + offset;

Post-indexed

[Rn],#offset

EA=mem [Rn];
Rn = Rn + offset;

With offset and Rm

Pre-indexed

[Rn,£Rm #offset]

EA= mem|[Rn £ Rm+offset];

Pre-indexed with

[Rn,=Rm #offset]!

EA= mem[Rn £ Rm+offset];

writeback Rn = Rn + Rm + offset
Post-indexed [Rn],£Rm,#offset EA= mem[Rn];

Rn = Rn = Rm + offset
Relative Location EA = Location

= [PC] + offset

Pre-Indexed Addressing Mode

1000 R5
Based register
STR E3, [R5.R6]
[] Eull:l Rﬁ
. Otfset register
1000
T 100 R3
E M=offset
1200 100 i

64

Pre-Indexed Addressing with Writeba s

2008
2012

After execution of
Push instruction

2008 R5
Based register (stack pointer)

X RO

TOS (top-of-stack)

Push instruction:

STR R0, [R5,# 4!

65

Post-Indexed Addressing

T 1000

100=25x4
L s

100=25x4

1o

-17

321

6 R1
1100 R2
Based register
25 K10
CHfset register
Load instruction:

LDE El. [BX). R10. L5L, #2

66

Relative Addressing Mode

Memory

address |

1000
1004
loos

ITEM=1060

word (4 bytes)

LDE EIl. ITEM

DPuerand

— Updated [PC]=1008

H2=offset

The operand must be within the range of 4095 bytes forward or
backward from the updated PC

67

Memory Instructions

Mnemonic

Description

Operation

LDR

load a waord from memary into a reqister

Reqister < mem32

5TR Store the word contents of a reqister in memaory mem3.2 < Register
LDRE Load a byte from memaory into a ragister Reqister = maem&s
STRE Store the byte contents of a register in memory meamé& < Reqister
LDRH Load a half-word from memaory into a reqister Reqister < meml 6
S5TRH Store the half-word contents of a reqister in memory meml 6 < Register
LDRSE |load a signed byvte into a register Register < Sign extended mem&
LODRSH |load a signed half-word into a register Reqister = Sign extended mam16

68

Addressing mode

Index mode

Description

Register offset

Immediate offsat

Scaled register

Preindex

Address calculated

wm':u:m.u write prior 1o being used [Rn, £Rm] [Rn, #2Imml2] | [Rn, *Rm, shift #imm]
back '
Preindex with Address calculated

o N | prior o being used, [Rn, #Rm] ! |[Rn, #*Imml2]!|[BRn, +Rm, shift #imm] !
write back '

base <- base + offset
Postindesx with Address calculated
" *after being used; [En],*Rm | [Rn],#+Tmml2 |[Rn], #+Rm, shift #imm

wirite back

base <- base + offset

69

LDR rl2,
LDR rl2,
STR rl2,

Example

r0,+r7]
10,-#0x6A0]!

0], +#0x6A0

STRH r12,[r0,+r7]!
LDR rl12, [rO, -r7, LSL #3]
LDREQ rl12, [rO, -r7, LSL #3]

70

In ARM processor, there are two instructions for
loading and storing multiple operand

— They are called Block transfer instructions

Only word operands are allowed, and the OP
codes used are LDM and STM

The memory operands must be Iin successive
word locations

All of the forms of pre- and post-indexing with
and without writeback are available

They operate on a Base register Rn specified In
the Instruction and offset is always 4

71

Multiple load/store

LDM : load multiple registers
SDM : store multiple registers

E.g.:
LDMIA R10, {rO-r3}
LDMIA R10!, {rO-r3}

72

Example

- LDMIA R10, {r0-r1}
R10 = 2004

 LDMDB R10, {rO-r1} s

2004 26
2008 27
2012 <5 TOS (top-of-stack)

After execution of

Push instruction Push instruction:

STR RO, [RB5.# 4]

73

Operations

Mnemonic

Description

Comments

4

Increment After

First data transfer occurs at memory location pointed to in base
register Rn. Subsequent transfers are from successively higher
memary locations.

B

Increment Before

First data transfer occurs at memory location 4 bytes higher
in memory than initial value in base register, Rn. Subsaguent
transfars are from successivaly higher memory locations.

DA

Decrement After

First data transfer occurs at memory location pointed to in base
register Rn. Subsequent transfers are from successivaly lower
memaory locations.

DE

Decrament Before

First data transfer occurs at memory location 4 bytes lower
in memory than inftial value in base register, Rn. Subssguent
fransfers are from successivaly lower memory locations.

74

Stack operations

Full ascending (FA) Is equivalent to IB
mode

Full Descending (FD) Is equivalent to DB
mode

Empty ascending (EA) is equivalent to |A
mode

Empty Descending (ED) Is equivalent to
DA mode

75

Example of stack instruction “~*

STMFD SP!, {r7-r10}

76

\)1E OF

7‘6\0
2
Zz
(©)
-
®)

An Example of Adding Numbers
(sum from O to N-1)

N &
. 1959 °

MOV R1, #N Move count into R1
LDR R2, POINTER Load address NUM1 into R2
MOV RO, #0 Clear accumulator RO

Loop LDR R3, [R2], #4 Load next number into R3
ADD RO, RO, R3 Add number into RO
SUBS R1, R1, #1 Decrement loop counter R1
BGT LOOP Branch back if not done
STR RO, SUM Store sum

Assuming that the memory location POINTER, and SUM are within the
range reachable by the offset relative to the PC

GT: signed greater than
BGT: Branch if Z=0 and N=0

77

Questions?

element x till element x+(n-1)
* The segment should use post-indexed

Write a segment of ARM code that add together

Elements

e Each element is word size

 Assume that

r0 point to the start of array nelements

rl1 =x

-« X

r2=n

ro G—}

-

Lower address

Higher address
<— X+ (n-1)

- X+ 1

78

Sample solution

ADD r0, r0, rl, LSL#2 Set r0 to address of element x

ADD r2, r0, r2, LSL#2
MOV rl, #0

-

Set r2 to address of element n+l

-

Initialise counter

-

loop
LDR r3, [r0], #4 ; Access element and move to next
ADD rl, rl, r3 ; Add contents to counter
CMP r0, r2 ; Have we reached element x+n?
BLT loop ; If not - repeat for

7 next element
: on exit sum contained in ril

79

Subroutines

A Branch and Link (BL) instruction is used to call
a subroutine

The return address Is loaded into register R14,
which acts as a link register

When subroutines are nested, the contents of
the link register must be saved on a stack by the
subroutine.

Register R13 is normally used as the pointer for this stack

Return to the main code by MOV PC, R14

80

Example

Calling program
LDR R1, N
LDR R2, POINTER
BL LISTADD
STR RO, SUM

Subroutine
LISTADD STMFD R13!, {R3, R14}

Save R3 and return address in R14 on stack,

using R13 as the stack pointer

MOV RO, #0
LOOP LDR R3, [R2], #4
ADD RO, RO, R3
SUBS R1, R1, #1
BGT LOOP
LDMFD R13!, {R3, R15}

Restore R3 and load return address into PC (r15)

81

Example of finding minimum %
number subroutine

min routine:
If(X<=vy) return x;
else return y;

82

Solution

dr rO, X
dr rl,y
nal min
str r0, result

min: cmp ro, rl
movgt r0, rl
mov PC, r1l4

83

Questions?

 What does this

program do? @
 Convert it into ARM K -

assembly code? Yes
 Convert it into ARM No

assembly usin

conditior?/al | 7 @ N

execution? r0=r0-rf | r1=rt -r0|

84

gcd

lags

stop

cmp
beqg
blt
sub
bal
sub
bal

Solution 1

ro, rl
astop
less
r0, r0, rl
ged
rl, rl, ro0O

gcd

:reached the end?

:if r0 » rl
:aubtract rl from r0

:subtract r0 from rl

85

Solution 2

cmp ro, rl :1f r0 > rl

subgt r0, r0, rl ;subtract rl from r0
aublt rl, rl, r0 ;else subtract r0 from rl
bne ged :reached the end?

86

Byte-Sorting Program

for (j=n-1; j>0; j5j-1)

{
for (k=j-1; k>=0; k=k-1)
{
If (LIST[K]>LISTI[j])
{
TEMP=LISTIK];
LIST[K]=LISTIj];
LIST[j]=TEMP;
}
}

g 1 n-2 n-1

87

Byte-Sorting Program

ADR R4,LIST Load list pointer register R4
LDR R10,N Initialize outer loop base
ADD R2,R4,R10 Register R2 to LIST+n
ADD R5,R4, #1 Load LIST+1 into R5

OUTER LDRB RO,[R2,#-1]'! Load LIST(j) into RO

MOV R3,R2 Initialize inner loop base
register R3 to LIST+n-1

INNER LDRB R1,[R3, #-1]! Load LIST(k) into R1

CMP R1,R0O Compare LIST(k) to LIST())
If LIST(K)>LIST()),

STRGTB R1,[RZ] interchange LIST(k) and LIST())
STRGTB RO,[R3]
MOVGT RO,R1 Move (new) LIST(j) into RO
CMP R3,R4 If k>0, repeat
BNE INNER innerloop
CMP R2,R5 If >1, repeat
BNE OUTER outerloop

88

ARM Instruction set

Data Processing Instructions
Load/Store Instructions
Branch Instructions

Control Instructions

89

Data Processing Instructions

e Move

Mnemonhic Definition Op Mode bits [25:21]
MOV [Move a 32-0it value info a register 1101
MW |Move the complement of the 32-bit value into a register 1111

o Arithmetic

Mnemonic Definition Op Mode bits [25:21]
ADD Add two 32-bit numbers o1 00
ADC Add two 32-bit numbers with carry o1 01
SUEB Subtract two 32-bit numbers o070
SEC Subtract two 32-bit numbers with carry o1 10
RSE Rewverse subtract two 22-bit numbers o071
RSC Rewverse subtract two 22-bit numbers with carry o1 11

90

Data processing Instructions

 Logical operations

Mnemonic Definition Op Mode bits [25:21]
AND Bitevise AND of two 32-Bit operands o000
ORR Britwise ORR of two 32-bit operands 1 1 00
EOR Brtwise Exclusive OR of two 32-bit aperands o001
BIC Bitwise logical clear { AND NOT) 1 110

- Compare operations

Mnemonic Definition Op Mode bits [25:21]
CAIP Compare two 32-bit values 1 0710
CN Compare negated 1 01 1
TE() Test two 32-bit numbers for equality 1 001
5T Tests the bits of a 32-bit number (Logical AND) 1 000

91

Data processing instructions

« Multiplications

Mnemonic

Description

Syntax

MUL

Multiply two 32-bit numbers, produce a
32-bit result: Rd = Rm * Rs

MUL{cond} {8} ERd, Em, En

MLA

Multiply two 32-bit numbers, and add 3™
number for a 32-bit result:
Rd=Rn + (Rm * Rs)

MLA{cond} {8} Rd, Em, En, ERs

UMULL

Muitiply two unsigned 32-bit numbers,
produce an unsigned 64-bit resuited in
twio registers: [RaHiRadlol = Rm * Rs

TMUOLL{cond} {8} RdLo, RdHi, Em, Es

UINMLAL

Multiply two unsigned 32-bit numbers and
add an unsigned &4-bit number in two
registers to produce an unsigned &4-bit
resulted in two registers:

[RdHil[Rdlo] = [RdHiJ[Rdlo] + Rm * Rs

UMLAL{cond} {8} RdLo, RdHi, Em, Rs

SMULL

Muitiply two signed 32-bit numbers, pro-
dukce a signed 64-bit result in two reqisters

SMULL{cond} {8} RdLo,RdHi, Rm, Rs

SMLAL

Multiply two signed 32-bit numbers and
add a signed 64-bit number In two regis-
ters to produce a signed &4-bit resuited in
two registers:

[RdHil[Rdlo] = [RaHij[Rdlo]+ Rm * Rs

SMLAL{cond} {8} RdLo, RdHi, Em, Rs

92

Format of data processing instructio

Immediate oparand
A IOB TR B 24232221 2019181T161614 121211109 8 7 6 6§ 4 2 2 1 0
COMD [0 01 | OPCODE (5 Rn Rd Rotate Immediate
Immediate shift oparand
A ZO2EOT RS 24232221 20191817 161614 12121110 9 8 7 6 6 4 3 2 1 0
CONMD o oo [OPCODE |5 Rn Rd Shift immedates | Shift| O Bm
Register oparand shift
A IOEITEHE 4232221 0191817161614 131211109 8 7 6 6§ 4 3 2 1 ©

COND

oo

QPCODE

S

Rn

Rd

Rs

)

shift

1

RArm

93

| oad/Store Iinstructions

Mnemonic Description Syntax
LDR Load a register from a 32-bit memary word |LDR{cond} Rn, <address mode>

LDRB _ |Load a reqister from an &-bit memory byte |LDRB{cond} Rn, <address mode>

LDRH Load a register from an 16-bit memary LDRH{cond} BRn,<address mode:
half-word

LDRSE Load a register from an &-bit signed LDRSB{cond} BRn,<address mode:
memaory byte

LORSH Load a register from a 16-bit signed LDRESH{cond} BEn,<address mode>

memary half-ward

94

L oad/store instruction format

Immediate offsatndex
A0 20 M IT IS 242322 NI 1AITIEI514123121110 2 8 7T & & 4 2 2 1 0

COND |0 1|0 |PIUIB[W]L Rri R 12-bit offset
Ragistar offsat/Index
AN MIT ISP NIG1BITIHEISI413121110 8 8 7 6 65 4 2 2 1 0
COND | 011 |PIU|BIW]|L Rn R 00000000 Am

Scaled registar offsaetindex
A1 A 20 M ITHEIE42A NI IAITIEIE1413121110 8 A T & & 4 2 2 1 0
COMND [0 11 (PIUBIW]|L Hni Hid Immedlaks Shift | Shit |0 Arm

95

Branch instruction format

A IVW2R2TX25 242322 20181817 6151412121110 9 8 7 6 5 4 2 2 1 0
COND | 1017 |L 24-pit off st

96

Control instruction format

MR
S0 2027 22322212010 1817161614 13121110 8 8 7 & 6 4 3 2 1 0
COND | 00010 |R|0O0O] 1111 Rd QCO000O00000O0O0

MSR Immediate Form
130 SO EIATH IS M2 M MIA1AITIEIE 1413121110 8 8 T & & 4 3 2 1 0

COND [00110 |R(1 O |fiskd_mask |1 1 1 1 Rotate Immediate

MSRH Registar Form
SN/ ITHIEMM232221 20191817 16161413121110 8 8 7 & 65 4 3 2 1 0

COND | 00010 |[H|10|fiek_mask| 1111 (000000000 Rm

97

Switching between ARM code an
thumb mode

Cwarhead
f::} Raturn

ARM State Timing-Critical Code (e.g., BXLR])
32-b in ARM State
Instructions) In)
I
1
|
|
|
Thumb State Main P Branch with : i B
: ain Program | ain Program
(16-bit o State Change _
Instructions) [in Thumb State {e.q., BLX) E in Thumb State
? ..
Time I

98

Basic concept of Stack

Stack PUSH operation to
back up register conterts

Registar
cortents

| —_—

SP —

Memory

_________&__________

Data Processing
(original ragister
contents destroyed)

Stack POP operation to
restore register contents

C 3 =

Mamory

Reqgister
contents restored

¥ |

99

Push-Pop Instruction

FUSH FE0} ; R12=R12-4, then Memory[R12] = RO
POF {RO} ; RO = Memory[R12], then R12 = R132+4

—r—

100

Sub-routine call

subroutine 1

FUISH IRO-R7, R12, R14} ; Bave registersa

. ; Do your procesaing

FOP 'RO-R7, R12, R14} : Reatore registers

BX Fl4 ; Eeturn to calling function

For BX instruction, If bit 0 of r14 is 1, then execute Thumb
Instructions. Otherwise, execute ARM instructions.

101

Using Link Register

main ; Main program
BL functionl ; Call functionl using Branch with Link
; lnstruction.
: PC = functionl and
: LE = the next instruction in main
functionl
- ; Program code for function 1
BYX LE ; REeturn

102

Stack operation

Main Program
: RO = X, Rl = ¥
EL functiconl

B2 = &

¢

Subroutine

T

functionl
FUEH {RO} ; stors RO to stack & adjust EF
PIEH {R1l} ; gtors Rl to stack & adjust EF
FUEH {RZ} ; stors RI to stack & adjust EF
. e ; Bxecuting task (R0, El and RE=2
;o could k= changsdl

POP {RZ} ; restore K2 and EF re-adjusted
POP {R1l} ; restore Rl and EP re-adjusted
POP {RO0} ; restore R0 and EP re-adjusted

Fﬂdae”ﬁﬂ EBX LE ; Return

; Back to main program
r RO = X, R1 = ¥, R2 = E
... ;7 next instructicons

103

ARM System vectors

Exception Vector Address
Reset DxO0000000
Undefined Instructions DxO0000004
Software Interrupt OxO0000008
Frefetch Abort O QOO0000C
Data Abort QxO0000010
Resarved DxO0000014
Interrupt Request Ox00000018
Fast Interrupt Reguest O QO0000T

104

Reset sequence

Fatch Initial Fetch Rosat Instruction
=P Valua Vactor Fetch
T e
Rasat Address = Address = Address = : :
Q0000000 | Q00000004 Resat Vector L
Timea

105

0XFFFFFFFF

0xE0000D00
0xDEFFFEFF

0xA0000000
OxOFFFFFFF

0x60000000
0xSFFFFFFF
0x40000000
0x3FFFFFFF
0x20000000
0x1 FFFFFFF
0x00000000

Memory map

Systam Lavel

Extarnal Devics

Extemal RAM

Paripherals

SHAM

Codea

Private peripherals, including
built-in interupt controller
(NVIC), MPU control
ragisters, and dabug
componants

Mainly used as external
perpharals

Mainly used as external
Memory

Mainly used as peripherals

Mainly used as static RAM

Mainly used for program
code, also provides excaption
vector table after power-up 106

