
1

USART

USART

• USART stands for Universal Synchronous

Asynchronous Receiver Transmitter

• Full-duplex NRZ asynchronous serial data

transmission

• Offer wide ranges of baud rate

2

3

Serial communication

• Can support high speed communication

• Support Synchronous, Asynchronous, and

Iso-synchronous

4

RS232C

• RS232C communication is between Data

Terminal Equipment (DTE) e.g. computer

and Data Communication Equipment

(DCE) e.g. modem

• RS232C (Recommend Standard for

Number 232C) specify communication

standard such as voltage level, terminating

resistances, cable length etc.

5

RS232C port connection

6

RS-232 Serial Interface

• Transmit and Receive data lines

• No clock signal exchanged – Sender and

receiver need to have same baud rate

• Baud rate is the clock rate of the bits

• Normal Bits: Start, 8 Data, Stop

• Voltage levels: a 1 is >3V and a 0 is <-3V

• Special RS232 voltage level converter

chips are typically used in interface

7

RS-232 standard

• Data rate from 20 kbps to over 1 Mbps

• Range up to 50 feet maximum

• It is robust interface up to 115,200 baud
rate (pulse per second)

• Voltage as high/low as  15 Volt

• Single-ended means communication is
over a single wire reference to ground

• There are 9 pins (DB-9) and 25 pins
format (DB-25)

8

RS-232 signal

1

0

9

RS-232 single ended uni-direction

10

RS-232 (DB9) male connector

Pin 1: Carrier Detect (CD)

Pin 2: Receive Data (RD)

Pin 3: Transmit Data (TD)

Pin 4: Data Terminal Ready (DTR)

Pin 5: Ground (GND)

Pin 6: Data Set Ready (DSR)

Pin 7: Request to Send (RTS)

Pin 8: Clear to Send (CTS)

Pin 9: Ring Indicator (RI)

11

Connect computer-modem

12

From DTE-DCE

13

Connect two PC directly

14

RS232 Handshaking

Assume modem wants to send data to PC

• RI indicate data available

• When modem connects, modem will send DCD
signal at time t0

• Modem will send DSR signal at time t1 when it
receive data to send

• PC will response with DTR at time t2

• Modem will send RTS at time t3

• PC response with CTS at time t4

RTS and CTS can also be sent again during the
transaction

15

UART

• UART is the name for the hardware used

for a RS-232 Serial Interface

• UART – Universal Asynchronous Receiver

Transmitter

• Early PCs had a UART chip, but this

functionality is now found inside a larger

chip that also contains other I/O features

16

UART transmission

17

UART initial communication

• Need to know how fast the data bits are coming

• Need to know where the starts bit begins

• Then, we know when to sample

18

UART communication

• Non-return to zero. In the idle state, the logic
state is 1.

• Start bit: transition to 0

• Data bit consists of start bit, 8 bit data, P-bit and
stop bit

• Data bits can be changed to 5,6,7, and 8 bits

• The stop bit can be for a minimum of 1.5T, 2T
instead of T, when T is normal interval

• P bit can be priority or for other purpose

• Stop bit: transition to 1

19

RS-232C Serial interface

transmission of an 8-bit data value

0 0 0 0 1 0 1 0

Start

Bit

0 1 2 3 4 5 6 7 Stop

BitData Bit number

Mark (1)

Space (0)

0x50 = ASCII “P”

LSB MSB

20

UART output 8 bits in 10T

21

UART output 7 bits in 9T

22

UART output 6 bits in 8T

23

UART output 8 bit in 11T

ARM USART block diagram

24

Control register in ARM

• Word length can be set by programming M

bit in USART_CR1 register

• Stop bit can be set by programming

USART_CR2, bit 12-13

– 1 stop bit (default)

– 2 stop bits used in modem

– 0.5 stop bits used in smart card

– 1.5 stop bits used in smart card

• Parity bit is set by USART_CR1, PCE bit
25

Word length setting

26

Stop bit programming

27

Receiver

• Start bit detection: the sequence is

1 1 1 0 X 0 X 0 X 0 0 0 0

28

Start bit detection

29

Data Transmission

1. Enable the USART by writing the UE bit in

USART_CR1 to 1

2. Program the M bit in USART_CR1 to define the word

length

3. Program the number of stop bit in USART_CR2

4. Select the baud rate using USART_BRR

5. Set the TE bit in USART_DR register to send an idle

frame as first transmission

6. Write the data to send in USART_DR register

7. After write the last data, wait for TC bit = 1. This

indicates that the transmission is complete

30

Data receive

1. Enable the USART by writing the UE bit in

USART_CR1 to 1

2. Program the M bit in USART_CR1 to define the word

length

3. Program the number of stop bit in USART_CR2

4. Select the baud rate using USART_BRR

5. Set the RE bit in USART_CR1 register. This enable the

receiver to search for a start bit

When a character is received

• RXNE bit is set

• An interrupt is generated, if RXNEIE bit is set
31

USART programming

int main(void){

 RCC_Configuration(); // System Clocks Configuration

 NVIC_Configuration(); // NVIC Configuration

 USART1GPIOInit(); // Configure the GPIO for USART1

 USART1Init(); // Init USART1

 USART_Communication();

}

32

void USART1GPIOInit(void){

 GPIO_InitTypeDef GPIO_InitStructure;

 /* Enable GPIOA and USART1 clock */

 RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOA |

 RCC_APB2Periph_USART1, ENABLE);

 /* Configure USART1 Tx (PA.09) as alternate function push-pull */

 GPIO_InitStructure.GPIO_Pin = GPIO_Pin_9;

 GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz;

 GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AF_PP;

 GPIO_Init(GPIOA, &GPIO_InitStructure);

 /* Configure USART1 Rx (PA.10) as input floating */

 GPIO_InitStructure.GPIO_Pin = GPIO_Pin_10;

 GPIO_InitStructure.GPIO_Mode = GPIO_Mode_IN_FLOATING;

 GPIO_Init(GPIOA, &GPIO_InitStructure);

}

33

void USART1Init(void){

 USART_InitTypeDef USART_InitStructure;

 /* USART1 is configured as follow:

 - BaudRate = 115200 baud

 - Word Length = 8 Bits

 - One Stop Bit

 - No parity

 - Hardware flow control disabled (RTS and CTS signals)

 - Receive and transmit enabled*/

 USART_InitStructure.USART_BaudRate = 115200;

 USART_InitStructure.USART_WordLength = USART_WordLength_8b;

 USART_InitStructure.USART_StopBits = USART_StopBits_1;

 USART_InitStructure.USART_Parity = USART_Parity_No;

 USART_InitStructure.USART_HardwareFlowControl =

USART_HardwareFlowControl_None;

 USART_InitStructure.USART_Mode = USART_Mode_Rx | USART_Mode_Tx;

 USART_Init(USART1, &USART_InitStructure); /* Configure USART1 */

 USART_Cmd(USART1, ENABLE); /* Enable the USART1 */

}

34

void USART_Communication(void){

 char ch;

 while(1)

 {

 SendCharUSART1(0x0D);

 SendCharUSART1(0x0A);

 SendCharUSART1('U');

 SendCharUSART1('S');

 SendCharUSART1('A');

 SendCharUSART1('R');

 SendCharUSART1('T');

 SendCharUSART1('1');

 SendCharUSART1('>');

 // Get and echo USART1

 ch = GetCharUSART1();

 while (ch != 0x0D)

 {

 SendCharUSART1(ch);

 ch = GetCharUSART1();

 }

 }

} 35

void SendCharUSART1(char ch){

 // Wait until TXE is set

 while(USART_GetFlagStatus(USART1, USART_FLAG_TXE) == RESET)

 {

 }

 USART_SendData(USART1, ch);

 // Wait until the end of transmit

 while(USART_GetFlagStatus(USART1, USART_FLAG_TC) == RESET)

 {

 }

}

char GetCharUSART1(void){

 char ch;

 // Wait until the USART1 Receive Data Register is not empty

 while(USART_GetFlagStatus(USART1, USART_FLAG_RXNE) == RESET)

 {

 }

 ch = (USART_ReceiveData(USART1) & 0xFF);

 return ch;

}
36

Questions?

37

