
Parallel Interface

• Parallel ports and LCD

• DC Motor and Relay

• Stepper motor

• Camera

• ISA Bus

• PCI Bus

• ARM Bus

• Other buses

Parallel port

• Multi-bit I/O

• Short distances

Parallel Port transfer of an 8-bit

data value to a printer

Data Lines

Busy

nStrobe

nAck

Data Valid

1 2 3 4

Parallel Printer I/O Operation

• 1. Computer waits for port’s output ready
bit (i.e. busy=0)

• 2. Computer outputs a new 8-bit data
value

• 3. Computer toggles strobe control line

• 4. Computer must wait for ack to pulse low
before any data or strobe line changes

• Printer can be busy for long time periods

(out of paper, offline, page feed…etc)

LCD controller interface

LCD

• RS is reset signal

• E is enable bit
There is an interval in which controller maybe in disable
state such as clear display (e.g., takes 150 s)

• Port- 8 bit parallel port for control/data bus

(RS = 0 control/RS =1 data)

• R/W’ = read or write port

• LCD controller has M display characters
stored in ROM

7

Pulse Width Modulation (PWM)

• PWM is a way for controlling analog
circuits with digital output

• By controlling analog circuit digitally,
system cost and power consumption can
be reduced

• Used in audio, motor control,
telecommunication

• The duty cycle is the proportional of the on
time to the regular interval or period

8

PWM with 10%, 50%, and 90%

duty cycle

9

PWM Signal

PWM Applications

• LED light control

• Motor speed

• Acoustics sound

PWM in RaspberryPi

Two software modules are available:

• RPI.GPIO is

http://sourceforge.net/projects/raspberry-

gpio-python

• RPIO is available from

http:///pythonhosted.org/RPIO

GPIO Function in RPIO

RPIO Code Example:
import RPIO

Set input pins

in_pin = 17;

out_pin = 24;

Specify use of BCM pin numbering

RPIO.setmode(RPIO.BCM)

Configure pin directions

RPIO.setup(in_pin, RPIO.IN)

RPIO.setup(out_pin, RPIO.OUT)

Wait for in_pin to reach low voltage

while(RPIO.input(in_pin) == RPIO.LOW):

RPIO.output(out_pin, RPIO.HIGH)

Return pins to default state

RPIO.cleanup()

RPIO Code with Interrupt
import RPIO

def edge_detector(pin_num, rising_edge):

if rising_edge:

print("Rising edge detected on Pin %s" % pin_num)

else:

print("Falling edge detected on Pin %s" % pin_num)

in_pin = 17

RPIO.setmode(RPIO.BCM)

RPIO.setup(in_pin, RPIO.IN)

Configure interrupt handling for rising and falling edges

RPIO.add_interrupt_callback(in_pin, edge_detector, edge='both')

RPIO.wait_for_interrupts()

RPIO.del_interrupt_callback(in_pin)

RPIO.cleanup

RPIO.PWM Module

PWM Control with RPIO

RPIO Code with PWM
import RPIO.PWM as PWM

import time

Define PWM pin

pwm_pin = 18

Initialize DMA and set pulse width resolution

PWM.setup(1)

Initialize DMA channel 0

PWM.init_channel(0)

Set pulse width to 1000us = 1ms

PWM.add_channel_pulse(0, pwm_pin, 0, 1000)

time.sleep(10)

Clear DMA channel and return pins to default settings

PWM.clear_channel(0)

PWM.cleanup()

RPIO Servo motor

import RPIO.PWM as PWM

import time

servo_pin = 18

min_width = 700

max_width = 2300

Create servo object

servo = PWM.Servo()

Set the angle to the minimum angle and wait

servo.set_servo(servo_pin, min_width)

time.sleep(1)

Rotate shaft to maximum angle

for angle in xrange(min_width, max_width, 100):

servo.set_servo(servo_pin, angle)

time.sleep(0.25)

RPIO Servo motor

Rotate shaft to minimum angle

for angle in xrange(max_width, min_width, -100):

servo.set_servo(servo_pin, angle)

time.sleep(0.5)

Stop delivering PWM to servo

servo.stop_servo(servo_pin

Driving Motors and Relays

• High current devices like motors, relays,
solenoids, buzzers, and light bulbs can require
more than 500mA of current

• Even though voltage levels may be the same,
digital outputs from a GPIO (parallel) port typically
drive only 5-20mA of current

• They cannot drive high current devices directly
and trying to do so will likely blow out the output
circuit

Driver Circuits

• A higher current driver circuit must be added
after the digital output pin and before the device

• A driver circuit typically uses a discrete power
transistor

• For DC motors, consider using an H-bridge
circuit module. It contains four power transistors
than can also reverse the motor.

• Diodes are often used for additional protection
across the load on motors and relays. When you
turn off the current in an inductive load it
generates a reverse voltage spike that might
damage the transistor (back EMF). The diode
shorts it out.

H-Bridge - DC Motor Driver Circuit

H-Bridge Control Functions
Input Function Operation

1 0 Forward DC Motor runs in the

forward direction

0 1 Reverse DC Motor runs in the

reverse direction

0 0 Stop Motor is not

connected – Coasts

1 1 Brake* or

Short Power Supply

(not allowed!)

Motor Terminals

Shorted or

Power Supply

Shorted!

*The Brake function requires a more complex decoder circuit to control the
power transistors. Check the H-Bridge data sheet to make sure it is supported
before using it. In some simple H-Bridge circuits, the fourth state must be
avoided (i.e., illegal state) and it will short out the power supply!

H-Bridge Example - Forward

HIGH LOW

H-Bridge Example - Reverse

LOW HIGH

Figure 3.10 Fairchild FAN8100N Low Voltage Dual H-Bridge DC Motor Driver IC.

Images courtesy of Fairchild Semiconductor.

Higher current H-Bridge modules typically use discrete power transistors
assembled on a board. This dual H-Bridge module switches up to 10 amps
at 24V DC. The eight power transistors can be see arranged on the right
side of the board. Photograph courtesy of RoboticsConnection.

Stepper motor

• A synchronous electric motor that can divide a full
rotation into a number of steps

• Motor position can be controlled precisely without any
feedback system

• Doesn’t require feedback sensor

• Operate in DC power

• Used in many devices such as harddisk drives, and
printers

• Can make motor spin by outputting the sequence like …
10,9,5,6,10,9,5,6….

• For 200 steps motor, each new output will cause the
motor to rotate 1.8 degree

Stepper motors

Stepper motor

Raspberry pi Camera

Raspberry Pi can interface through:

• Camera Serial Interface (CSI)

• USB

• IP Camera

RasPi Camera modules

• Raspberry Pi camera module: 5 M pixels

at 30 FPS

• Raspberry Pi camera module black NoIR

OpenCV Installation

https://www.pyimagesearch.com/2017/09/04

/raspbian-stretch-install-opencv-3-python-

on-your-raspberry-pi/

sudo raspi-config

- enable SSH

- enable Camera

sudo apt-get update

sudo apt-get upgrade

sudo apt-get –y install synaptic

OpenCV Installation

sudo apt-get -y install python-numpy python-

scipy python-nose python-pandas python-

matplotlib ipython-notebook python-sympy

sudo apt-get -y install libgtkglext1-dev

sudo apt-get -y install build-essential cmake

pkg-config

sudo apt-get -y install qtcreator qt4-dev-tools

libqt4-dev libqt4-core libqt4-gui v4l-utils

OpenCV Installation

wget

http://sourceforge.net/projects/opencvlibrary/

files/opencv-unix/2.4.10/opencv-2.4.10.zip

unzip opencv-2.4.10.zip

tar xzvf opencv-2.4.10.tar.gz

cd opencv-2.4.10

mkdir build

cd build

http://sourceforge.net/projects/opencvlibrary/files/opencv-unix/2.4.10/opencv-2.4.10.zip

OpenCV Installation

cmake -D CMAKE_BUILD_TYPE=RELEASE -D WITH_OPENGL=ON -D

INSTALL_C_EXAMPLES=ON -D INSTALL_PYTHON_EXAMPLES=ON -D

WITH_QT=ON -D CMAKE_INSTALL_PREFIX=/usr/local -D WITH_TBB=ON -D

WITH_V4L=ON -D BUILD_NEW_PYTHON_SUPPORT=ON -D BUILD_EXAMPLES=ON

make

sudo make install

sudo nano /etc/ld.so.conf.d/opencv.conf

add /usr/local/ib

sudo nano /etc/bash.bashrc

add

PKG_CONFIG_PATH=$PKG_CONFIG_PATH:/usr/local/lib/pkgconfig

export PKG_CONFIG_PATH

Testing

lsusb # list all usb devices

sudo apt-get –y install guvcview # capture

image

lxsession

guvcview

cd /home/pi/opencv-2.4.10/samples/python

ls

python facedetect.py

OpenCV Example

import cv2

img =

cv2.imread('/home/pi/screenshot.jpg',cv2.IMREAD_GRAYSCALE)

cv2.imshow('image',img)

cv2.waitKey(0)

cv2.destroyAllWindows()

Result

Bus history

• Industry System Architecture (ISA)

• Developed by IBM in 1981 for IBM XT

(extended technology) 8 bits

• Modified for 16 bits for IBM AT (advance

technology)

• Later, they rename AT bus to ISA bus

• IBM move to replace IBM AT bus with

MCA (Micro Channel Architecture)

Bus history

• Gang of nine IBM PC compatible
manufacturers announces EISA to fight
with MCA for 32 bits

• PCI (Peripheral Component Interface) is
developed by Intel in 1990 (my ex-
manager was in that team)

• AGP Accelerated Graphics Port

• PCI-E (Express) is the extension of PCI

• ARM bus is designed for ARM architecture

A First Generation Bus Example: ISA

• ISA bus used in early PCs for Plug-in Cards

• Address Bus (SAx)

– Originally 16 bits then expanded to 24

• Data Bus (SDx)

– 8 bits then 16 bits

– EISA expanded it to 32 bits

• Bus Status Signals

– MEMR, MEMW, IOR, IOW

• 5V TTL signals

A3

A2

A1

A0

Address

Decoder

Output

Digital Logic Review:

A simple address decoder circuit for

4-bit address (A3..A0) = 0xA = 1010B

Would need to decode more address bits in an actual system

Tri-state logic gate outputs

are used to drive most bus signals

Hardware allows only one tri-state gate at a time to drive a bus signal!

Works just like a large multiplexer:

One of several inputs connects to the output

input output
(bus)

tri-state
control
input

control input output

0 0 High Z

0 1 High Z

1 0 0

1 1 1

Legacy PC I/O address assignments

I/0 address range I/O device

000h – 200h Reserved for Internal Devices:

Interrupt & DMA controllers, timers

278h - 27Fh Parallel Printer (LPTx:)

2E8h - 2EFh Serial Port 4 (COM4:)

2F8h - 2FFh Serial Port 2 (COM2:)

378h - 37Fh Parallel Printer (LPT1:)

3B0h - 3BBh MDA Adapter

3BCh - 3BFh Parallel Printer (LPTx:)

3C0h - 3CFh VGA/EGA Adapter

3D0h - 3DFh CGA Adapter

3E8h - 3EFh Serial Port 3 (COM3:)

3F0h - 3F7h Floppy Controller

3F8h - 3FFh Serial Port 1 (COM1:)

Original PC design only decoded low 10 I/O address bits to save hardware

ISA bus

An Example ISA Bus I/O Write Operation

Valid Address

Valid Data

Bus Clock

Address

I/O Write

Data

Clock data into a

register on this edge!

An Example ISA Bus I/O Read Operation

Valid Address

Valid Data

Bus Clock

Address

I/O Read

Data

Typical I/O Input Port

Hardware Operation

Data Bus bit x

 Bus I/O Read Command

Device’s I/O Address Decoded

Address

Decoder

Circuit

Address Bus

Data bit x

in from

I/O Device

One tri-state

gate is needed

for each bit on

the data bus

Tri-state

Control

Typical I/O Output Port Hardware

Operation

Device’s I/O Address Decoded

 Bus I/O Write Command

Data Bus

R

e

g

i

s

t

e

r

Data out to

I/O Device

Clock

Address Bus
Address

Decoder

Circuit

Software for I/O port transfers

• Can use in-line assembly language in

C/C++

• Most C/C++ compilers have built-in

function calls for I/O port input and output

In-line Assembly Example for X86

// I/O Input Routine // I/O Output Routine

__asm{ __asm{

mov dx, IO_address mov dx,IO_address

in al, dx mov al,IO_data

mov IO_data,al out dx, al

} }

Problems: Does not port to other processors and many people do not

understand assembly language!

Windows CE C/C++

I/O Port R/W Functions

• READ_PORT_UCHAR(I/O_Address)

– Returns 8-bit input value from port

• WRITE_PORT_UCHAR(I/O_Address,I/O_Data)

– Sends 8-bit data value to output port

• Found in CE Device Driver Kit (CEDDK)

• Need to link to CEDDK.lib library and include

CEDDK.h – modify sources file for this

• Typically used in low-level device drivers

A Second Generation Bus - PCI

• 32-bit Multiplexed Address and Data Bus (AD)

• Address sent on first clock cycle

• Bus command sent on first clock cycle (C/BE)

• Data on subsequent clock cycles

• Bus Clock rates 33 to 512Mhz

• One Data transfer per clock is possible

• Supports Data Bursts (example to follow)

Computer System PCI

• When I/O devices are distributed in the

network, all can communicate through a

common parallel bus

• PCI connects at high speed to other

devices on a very short distances (<25

cm) using a parallel bus

PCI bus applications

• Display monitor

• Printer

• Streaming displays

• Network subsystems

• Video card

• Digital video capture card

• Harddisk controller

PCI bus features

• 32 bit data bus extendible to 64 bit

• Support both Synchronous and

Asynchronous transfer

• Automatically detects the interfacing

systems and assign new address

• Simplify the addition and deletion of the

system peripherals

Identification numbers

A device identifies its address space by

three identification numbers

• I/O port

• Memory locations

• Configuration registers

Each PCI device has address space

allocation of 256 bytes

PCI device

• A 32-bit register in a PCI device for device ID

and allow auto-detection

• Each device may use a FIFO controller with a

FIFO buffer for maximum throughput

• Independent from IBM architecture

• Number of embedded devices use PCI bus

PCI bridge

• PCI bridge switches the communication
between memory bus to PCI bus

• In most systems, the processor has a
single bus that connects to a PCI bridge

• Some processor integrates PCI bridge
within the processor to reduce the system
cost

PCI bridge/switch

Another configuration:

• Separate memory bus

• A separated I/O bus connected to PCI

switch to the I/O devices

• Widely used in desktop PC

PCI bridge and buses

PCI

• 32 bit 33 MHz

throughput = MBps

• 64 bit 66 Mhz

throughput = MBps

133

533

PCI Bus Command C/BE

Interrupt Acknowledge 0000

Special Cycle 0001

I/O Read 0010

I/O Write 0011

Reserved 0100

Reserved 0101

Memory Read 0110

Memory Write 0111

Reserved 1000

Reserved 1001

Configuration Read 1010

Configuration Write 1011

Memory Read Multiple 1100

Dual Address Cycle 1101

Memory Read Line 1110

Memory Write and Invalidate 1111

PCI Bus Commands (C/BE)

PCI Read Burst Cycle

Bus Clock

Frame #

AD

C/BE#

IRDY#

TRDY#

DEVSEL#

0 1 2 3 4 5 6 7 8

Address Data1 Data2 Data3

Bus-Cmd BE#’s

Address
Phase

Data
Phase

Data
Phase

Data
Phase

Bus Transaction

PCI Read Burst Cycle

Clock Cycle Description of PCI operation

0 Bus is idle

1 The initiator sets FRAME low, places the address on the Address/Data (ADx) lines,

and the bus command (read) on the Command/Byte Enable (C/BE) lines (address

phase).

2 The initiator tri-states the address and waits for the target to return a data value by

turning on its tri-state drivers. Device Select (DEVSEL) low indicates a target

device has decoded its address range and it is responding to the command. The

target drives TRDY high to indicate the target needs another clock cycle to respond

with the data.(data phase)

3 The target drives the data value and sets target ready (TRDY) low to indicate that

data is valid. When both IRDY and TRDY are low a data transfer occurs.

4 The target sets TRDY high to indicate it need an additional clock cycle for the next

data transfer.

5 The second data transfer occurs when both TRDY and IRDY are low. The initiator

saves the target data.

6 The target drives the data value, but the initiator requests an additional clock cycle

by set IRDY high.

7 The initiator sets IRDY low to complete the third data transfer. The initiator saves

the target data value, The initiator drives FRAME high to end the data phase.

8 All bus signals are tri-stated or driven to the inactive state.

PCI Write Burst Cycle

Bus Clock

Frame #

AD

C/BE#

IRDY#

TRDY#

DEVSEL#

0 1 2 3 4 5 6 7 8

Address Data2 Data3

Bus-Cmd BE-3

Address
Phase

Data
Phase

Data
Phase

Data
Phase

Bus Transaction

Data1

BE-1 BE-2

PCI Write Burst Cycle

Clock Cycle Description of PCI operation

0 Bus is idle

1 The initiator sets FRAME low, places the address on the Address/Data (ADx) lines, and

the bus command (write) on the Command/Byte Enable (C/BE) lines (address phase).

2 The initiator places the data on the ADx lines and byte enables on C/BE lines, Device

Select (DEVSEL) low indicates a target device has decoded it’s address range and it is

responding to the command. When both IRDY and TRDY are low the target saves the

data. (data phase)

3 The initiator drives new data and byte enables. When both initiator ready IRDY and

TRDY are low a data transfer occurs and the target saves the data.

4 The initiator sets IRDY high and the target sets TRDY requesting an additional clock

cycle.

5 The initiator drives new data and byte enables and sets IRDY low. The initiator sets

FRAME high indicating the final data transfer.

6 The target drives the data value, but the initiator requests an additional clock cycle by

set IRDY high.

7 The initiator sets IRDY low to complete the third data transfer. The target saves the data

value.

8 All bus signals are tri-stated or driven to the inactive state.

Software for PCI devices

• Each PCI device has a 256 byte

configuration area

• At power up each device can respond with

manufacturer and device type information

• Allows system to locate and load device

drivers at power up

• Memory and I/O base addresses are

configured with software (no jumpers)

Accelerated Graphics Port (AGP)

• Newer Graphics cards were consuming

most of the PCI bus bandwidth

• Solution: Move graphics card to its own

PCI bus

• A connection with only 1 device is

technically a “port” and not a “bus.”

• Extra clock phase signals were added to

increase clock rate 2X, 4X, and 8X

Logic Analyzer to capture PCI bus

Figure 2.15 A Tektronix logic analyzer setup to capture and decode PCI bus signals. This logic analyzer is actually an embedded system that runs Windows XP. A special PCI

interposer adapter card is used to quickly connect probes along with special fi rmware for the logic analyzer. Images courtesy of Nexus Technology.

Comparing ISA/PCI

ISA PCI

Adv:

16 bits 32 bits

slower faster

separated addr/data shared addr/data

only PC system support many systems

simple protocol PCI bridge

Third Generation Bus – PCI Express

• High-Speed Serial line(s) are used to transfer
PCI signals

• Fewer signal lines are used, but with much
higher bandwidth on each signal line
– More stringent design restrictions on drivers, length,

loading, crosstalk, and terminations

• Clock rates from 2.5 Gbps to 10 Gbps

• Can combine serial lines into groups called
lanes to provide more bandwidth to a device

• No changes needed in software – works the
same as PCI

PCI-E speed

A lane is composed of a transmit and receive pairs
of differential lines (4 wires)

Per lane:

v1.x: 250 MB/s

v2.0: 500 MB/s

v3.0: 1 GB/s

16 lane slot:

v1.x: 4 GB/s

v2.0: 8 GB/s

v3.0: 16 GB/s

PCI-E links and lanes

PCI-E connectors

ARM Bus

• Introduced by ARM Ltd in 1996

• Widely used as the on-chip bus

ARM BUS

• AMBA = ARM Memory Bus Architecture

• AHB = ARM High performance Bus

• APB = ARM Peripheral Bus

• AMBA-AHB connects ARM core with

memory, external DRAM

• AMBA-APB interfaces ARM core with

external low-speed I/O devices using

AMBA-APB bridge

AMBA

• AMBA-AHB connects to 32-bit data and

32-bit address at high speed

• AHB maximum bps bandwidth is 16 times

ARM processor clock

• AMBA-APB bridge is used to

communicate AHB bus to APB bus

• The bridge communicates to memory

through AMBA-AHB

APB bus

Connect:

• I2C

• Touch screen

• SDIO

• MMC (multimedia-bus)

• USB

• CAN bus

ARM BUS

Logic analyzer to capture ARM

instruction sequence

Figure 2.16 A Tektronix logic analyzer with optional software setup to capture and disassemble an

ARM processor’s instruction execution sequence. This logic analyzer is actually an embedded system

that runs Windows XP. Images courtesy of Nexus Technology.

Other Bus interfaces

• EISA bus

32 bit, asymmetric I/O channel

up to 33 MB/s data transfer rate

4GB address space, 8 DMA chanels

backward compatible with ISA

• Futurebus+

Designed by IEEE896 committee

64 bit and 160 MB/s

Other Bus interfaces

• SCSI (small computer System Interface) bus

ANSI standard

4MB – 10 MB per second data transfer rate

mainly for computer to other devices,

WIDE SCSI uses wider cable

• Ultra SCSI

Support from 20MB – 80 MB per second

• TURBO Channel bus

32 bit, asymmetric synchronous I/O channel

12.5 – 25 MHz data transfer rate

Developed by DEC (digital)

Other Bus interfaces

• XMI Bus

64 bits addressing

Upto 100 MB per second

• IEEE-796 (Multi-bus)

introduced by Intel for multiprocessors on the
same board, support 16 bit data and 24 bit
address buses

• VME bus (Euro standard)

Similar to Intel Multi-bus, 24 bit address bus
with 8/16/32 data buses

Questions?

