Parallel Interface

Parallel ports and LCD
DC Motor and Relay
Stepper motor
Camera

ISA Bus

PCI Bus

ARM Bus

Other buses

Parallel port

* Multi-bit I/O

 Short distances

Parallel Port transfer of an 8-bit
data value to a printer

| |
Data Lines : : Data Valid :
| | I !
Busy | | I // I \\
T T T |
| | I I
nStrobe ! ! ! !
| | >\ //
| | I I
| | |
nAck | | | | /
| | I I
1 2 3 4

Parallel Printer I/O Operation

1. Computer waits for port’'s output ready
bit (I.e. busy=0)

2. Computer outputs a new 8-bit data
value

3. Computer toggles strobe control line

4. Computer must wait for ack to pulse low
before any data or strobe line changes

Printer can be busy for long time periods
(out of paper, offline, page feed...etc)

LCD controller interface

Processor

Font table,
CGRAM
and LCD

driver

LCD

* RS is reset signal

* E Is enable bit

There Is an interval in which controller maybe in disable
state such as clear display (e.g., takes 150 us)

» Port- 8 bit parallel port for control/data bus
(RS =0 control/RS =1 data)
« R/W' =read or write port

« LCD controller has M display characters
stored in ROM

Pulse Width Modulation (PWM)

« PWM Is a way for controlling analog
circuits with digital output

* By controlling analog circuit digitally,
system cost and power consumption can
be reduced

 Used in audio, motor control,
telecommunication

* The duty cycle Is the proportional of the on
time to the regular interval or period

PWM with 10%, 50%, and 90%
duty cycle

Om = High Level Off = Low Level

PWM Signal

PWM Applications

* LED light control
* Motor speed
* Acoustics sound

PWM In RaspberryPi

Two software modules are available:

« RPI.GPIO Is
http://sourceforge.net/projects/raspberry-

gpio-python

* RPIO is available from
http:///pythonhosted.org/RPIO

GPIO Function in RPIO

Function Description

setmode (int num_mode)
setup (int pin, int mode)

setup (int pin, int mode,
int res mode)

output (int pin, int level)

int input (int pin)

Identifies the method of pin numbering

Configures a pin as an input or output

Configures a pin as an input or output, and con-

nects a pull-up or pull-down resistor

Sets a pin’s logic level to RPIO.HIGH Or RPIO.LOW

Reads the logic level at the given pin

cleanup () Sets pins to default state

Associates a callback function with the given pin
and an event that meets the specified criteria

add interrupt callback
(int pin, callback_ func,
edge="both',
pull up down=RPIO.PUD OFF,
threaded callback=False
debounce timeout ms=None)
wait_for interrupts
(threaded=False,
poll timeout=1)

Halts processing until an interrupt occurs

del interrupt callback Used to remove callbacks associated with the pin

(int pin)

RPIO Code Example:

Import RPIO

Set input pins

In_pin =17,

out_pin = 24;

Specify use of BCM pin numbering
RPIO.setmode(RPIO.BCM)

Configure pin directions
RPI1O.setup(in_pin, RPIO.IN)
RPI1O.setup(out_pin, RPIO.OUT)

Wait for in_pin to reach low voltage
while(RPIO.input(in_pin) == RPIO.LOW):
RPIO.output(out_pin, RPIO.HIGH)

Return pins to default state
RPIO.cleanup()

RPIO Code with Interrupt

import RPI1O
def edge_detector(pin_num, rising_edge):
If rising_edge:
print("Rising edge detected on Pin %s" % pin_num)
else:
print("Falling edge detected on Pin %s" % pin_num)

in_pin =17
RPIO.setmode(RPIO.BCM)
RPI10.setup(in_pin, RPIO.IN)

Configure interrupt handling for rising and falling edges
RPIO.add_interrupt_callback(in_pin, edge detector, edge='both")
RPIO.wait_for_interrupts()

RPI10O.del_interrupt_callback(in_pin)
RPIO.cleanup

RPIO.PWM Module

Function Description

setup (pulse incr us=10, Initializes the DMA channels for use
delay hw=0)

init channel (int dma channel, Configures the cycle with a specific period (20 ms by
subcycle time us=20000) default)

add channel pulse Generates pulse of the given width for the pin

(int dma_ channel, int pin,
int start, int width)

clear channel Clears all pulses from the channel
(int dma_channel)

clear channel gpio Clears the pulse for the specified pin from the
(int dma channel, int pin) channel

cleanup () Halts PWM and DMA

PWM Control with RPIO

: width : _ width :
| D | _ _ |
| start | start |

J

i

20 ms
(default)

RPIO Code with PWM

import RPIO.PWM as PWM
Import time

Define PWM pin
pwm_pin =18

Initialize DMA and set pulse width resolution
PWM.setup(1)

Initialize DMA channel O
PWM.init_channel(0)

Set pulse width to 1000us = 1ms
PWM.add_channel pulse(0, pwm_pin, 0, 1000)

time.sleep(10)
Clear DMA channel and return pins to default settings

PWM.clear_channel(0)
PWM.cleanup()

RPIO Servo motor

import RPIO.PWM as PWM
import time

servo_pin =18
min_width = 700
max_width = 2300

Create servo object

servo = PWM.Servo()

Set the angle to the minimum angle and wait

servo.set_servo(servo_pin, min_width)

time.sleep(1)

Rotate shaft to maximum angle

for angle in xrange(min_width, max_width, 100):
servo.set_servo(servo_pin, angle)
time.sleep(0.25)

RPIO Servo motor

Rotate shaft to minimum angle

for angle in xrange(max_width, min_width, -100):
servo.set_servo(servo_pin, angle)
time.sleep(0.5)

Stop delivering PWM to servo
servo.stop_servo(servo_pin

Driving Motors and Relays

 High current devices like motors, relays,
solenoids, buzzers, and light bulbs can require
more than 500mA of current

« Even though voltage levels may be the same,
digital outputs from a GPIO (parallel) port typically
drive only 5-20mA of current

* They cannot drive high current devices directly
and trying to do so will likely blow out the output
circuit

Driver Circuits

A higher current driver circuit must be added
after the digital output pin and before the device

A driver circuit typically uses a discrete power
transistor

For DC motors, consider using an H-bridge
circuit module. It contains four power transistors
than can also reverse the motor.

Diodes are often used for additional protection
across the load on motors and relays. When you
turn off the current in an inductive load it
generates a reverse voltage spike that might
damage the transistor (back EMF). The diode
shorts it out.

H-Bridge - DC Motor Driver Circult

+5V

PAN

1K

Forward Input Reverse Input

H-Bridge Control Functions

10 Forward DC Motor runs in the
forward direction

01 Reverse DC Motor runs in the
reverse direction
00 Stop Motor is not
connected — Coasts
11 Brake* or Motor Terminals
Shorted or
Short Power Supply Power Supply
(not allowed!) Shorted!

*The Brake function requires a more complex decoder circuit to control the
power transistors. Check the H-Bridge data sheet to make sure it is supported
before using it. In some simple H-Bridge circuits, the fourth state must be
avoided (i.e., illegal state) and it will short out the power supply!

H-Bridge Example - Forward

1K

Forward Input

HIGH CO—

1K

+5V

1K

1K

H-Bridge Example - Reverse

Forward Input

+5V

1K

1K

Re Input

verse Inpu
] HIGH

FORWARDA G ch A

Control

REVERSEA (1 Circuit

b

I—Il
Bias & TSD
Circuit

5) PVCCB

FORWARDB @

Ch. B
430UT1B

Control
Circuit OuT2B

GND

REVERSEB (1

.

Figure 3.10 Fairchild FAN8100N Low \Woltage Dual H-Bridge DC Motor Driver IC.
Images courtesy of Fairchild Semiconductor.

Higher current H-Bridge modules typically use discrete power transistors
assembled on a board. This dual H-Bridge module switches up to 10 amps
at 24V DC. The eight power transistors can be see arranged on the right
side of the board. Photograph courtesy of RoboticsConnection.

Stepper motor

A synchronous electric motor that can divide a full
rotation into a number of steps

Motor position can be controlled precisely without any
feedback system

Doesn’t require feedback sensor
Operate in DC power

Used in many devices such as harddisk drives, and
printers

Can make motor spin by outputting the sequence like ...
10,9,5,6,10,9,56....

For 200 steps motor, each new output will cause the
motor to rotate 1.8 degree

Stepper motors

Stepper motor

Data
bus

Processor

BN

:

INT

Port
intertace
at device

PC
4-
PC
-

Input to stepper

> motor coils driver
| transistors

directly or
through
optocoupler

Raspberry pi Camera

Raspberry Pi can interface through:
« Camera Serial Interface (CSI)

« USB

* |P Camera

RasPi Camera modules

* Raspberry Pi camera module: 5 M pixels
at 30 FPS

» Raspberry Pi camera module black NolR

OpenCV Installation

https://www.pyimagesearch.com/2017/09/04
[raspbian-stretch-install-opencv-3-python-
on-your-raspberry-pi/
sudo raspi-config

- enable SSH

- enable Camera
sudo apt-get update
sudo apt-get upgrade

sudo apt-get -y install synaptic

OpenCYV Installation

sudo apt-get -y install python-numpy python-
scipy python-nose python-pandas python-
matplotlib ipython-notebook python-sympy

sudo apt-get -y install libgtkglextl-dev

sudo apt-get -y install build-essential cmake
pkg-config

sudo apt-get -y install gtcreator qt4-dev-tools
libqt4-dev libgt4-core libqt4-gui v4l-utils

OpenCYV Installation

wget
http://sourceforge.net/projects/opencvlibrary/
files/opencv-unix/2.4.10/opencv-2.4.10.zip

unzip opencv-2.4.10.zip

tar xzvf opencv-2.4.10.tar.gz
cd opencv-2.4.10

mkdir build

cd build

http://sourceforge.net/projects/opencvlibrary/files/opencv-unix/2.4.10/opencv-2.4.10.zip

OpenCYV Installation

cmake -D CMAKE_BUILD_TYPE=RELEASE -D WITH_OPENGL=0ON -D
INSTALL_C_EXAMPLES=ON -D INSTALL_PYTHON_EXAMPLES=0ON -D
WITH_QT=0ON -D CMAKE_INSTALL_PREFIX=/usr/local -D WITH_TBB=ON -D
WITH_V4L=0ON -D BUILD_NEW_PYTHON_SUPPORT=0ON -D BUILD_EXAMPLES=ON

make

sudo make install

sudo nano /etc/ld.so.conf.d/opencv.conf
add /usr/local/ib

sudo nano /etc/bash.bashrc

add
PKG_CONFIG_PATH=$PKG_CONFIG_PATH:/usr/local/lib/pkgconfig
export PKG_CONFIG_PATH

Testing

Isusb # list all usb devices

sudo apt-get —y install guvcview # capture
Image

IXsession

guvcview

cd /home/pi/opencv-2.4.10/samples/python
s

python facedetect.py

OpenCV Example

Import cv2

img =

cvg.imread('/home/pi/screenshot.jpg',cv2.IMREAD_G RAYSCALE)
cv2.imshow(‘image’,img)

cv2.waitKey(0)

cv2.destroyAllWindows()

‘ Q f" @ pw@raspberrypx ~ [px@raspberrypl ~ 3 451%(2227

Bus history

 Industry System Architecture (ISA)

* Developed by IBM in 1981 for IBM XT
(extended technology) 8 bits

* Modified for 16 bits for IBM AT (advance
technology)

 Later, they rename AT bus to ISA bus

* IBM move to replace IBM AT bus with
MCA (Micro Channel Architecture)

Bus history

Gang of nine IBM PC compatible
manufacturers announces EISA to fight
with MCA for 32 bits

PCI (Peripheral Component Interface) Is
developed by Intel In 1990 (my ex-
manager was In that team)

AGP Accelerated Graphics Port
PCI-E (Express) is the extension of PCI
ARM bus is designed for ARM architecture

A First Generation Bus Example: ISA

ISA bus used in early PCs for Plug-in Cards
Address Bus (SAX)
— Originally 16 bits then expanded to 24

Data Bus (SDx)
— 8 bits then 16 bits
— EISA expanded it to 32 bits

Bus Status Signals
— MEMR, MEMVW, IOR, IOW

5V TTL signals

Digital Logic Review:
A simple address decoder circuit for
4-bit address (A3..A0) = OxA = 1010B

A3

Address
A2 >C Decoder
Al Output

A0 —>o—

Would need to decode more address bits in an actual system

Tri-state logic gate outputs
are used to drive most bus signals

tri-state
control | input | output control
0 0 High Z Input
0 1 High Z
1 0 0
1 1 1 input output
(bus)

Hardware allows only one tri-state gate at a time to drive a bus signal!

Works just like a large multiplexer:
One of several inputs connects to the output

Legacy PC I/O address assignments

1/0 address range | 1/O device

000h — 200h Reserved for Internal Devices:
Interrupt & DMA controllers, timers

278h - 27Fh Parallel Printer (LPTX:)

2E8h - 2EFh Serial Port4 (COM4:)

2F8h - 2FFh Serial Port2 (COMZ2))

378h - 37Fh Parallel Printer (LPT1:)

3B0h - 3BBh MDA Adapter

3BCh - 3BFh Parallel Printer (LPTX:)

3C0h - 3CFh VGA/EGA Adapter

3D0h - 3DFh CGA Adapter

3E8h - 3EFh Serial Port3 (COM3:)

3FO0h - 3F7h Floppy Controller

3F8h - 3FFh Serial Port1 (COML))

Original PC design only decoded low 10 I/O address bits to save hardware

ISA bus

ISA
GND BY Q a1 (70 CHETR
RESET DRV 82 A2 D7
+5v 83 Ad D6
RQ2 84 A4 DS
-5V 8% A5 D4
DRO2 B6 A6 D3
-12v 87 AT D2
Reserviert BB A8 DY
+12v B9 Do
GND B10 A10 VO CHRDY
MEMW B11 Al AEN
MEMR B12 A12 A19
oW 813 A1l A8
OR 814 Atd AY7
DACK 3 B15 AISATE
DRQ 3 816 A1S A1S
DACK § 817 A7 A4
DRQ 1 B18 Al8 A1
DACKO B19 A13 A2
— CLX B20 | A20 A1
IRQ7 B21 AZ1 A10
RQE B22 A22 A9
RQs B23 A23 AS
RO4 B24 A24 AT
MQ 3 825 A25 AG
DACKZ 826 A26 AS
T/C B27 AZ7 A4
ALE 828 AZ8 A3
+5V B29 A29 A2
0sC B3O A30 A1
GND B31 [\ A31 AD

An Example ISA Bus I/O Write Operation

Bus Clock \

I/0O Write y

Clock data into a
register on this edge!

An Example ISA Bus I/O Read Operation

Bus Clock |
Address X Vaid Address ><

/O Read

Data XVaIid Data X

Bus 1/0 Read Command —
Device’s I/O Address Decoded

Address Bus ==p»

Address
Decoder
Circuit

Data Bus bit x

D

'ypical I/0O Input Port
Hardware Operation

Tri-state
Control
Data bit x
«——— infrom
I/O Device

One tri-state
gate is needed
for each bit on
the data bus

Typical I/O Output Port Hardware

Operation
Address
Address Bus == Decoder
Circuit Data BUS e Data out_ to
1/0O Device

> " @+~ 0 —Q ® 7

Device’s /0O Address Decoded

Bus I/0 Write Command — | / Clock

Software for I/O port transfers

« Can use In-line assembly language in
C/C++

* Most C/C++ compilers have built-in
function calls for 1/O port input and output

In-line Assembly Example for X86

// 1/O Input Routine // 1/O Output Routine
__asm{ __asm{
mov dx, IO _address mov dx,|O address
In al, dx mov al, IO data
mov |0 _data,al out dx, al
} }

Problems: Does not port to other processors and many people do not
understand assembly language!

Windows CE C/C++
/O Port R/W Functions

READ PORT_UCHAR(I/O_Address)
— Returns 8-bit input value from port

WRITE PORT _UCHAR(I/O_Address,|/O Data)
— Sends 8-bit data value to output port

Found in CE Device Driver Kit (CEDDK)

Need to link to CEDDK.Iib library and include
CEDDK.h — modify sources file for this

Typically used in low-level device drivers

A Second Generation Bus - PCI

« 32-bit Multiplexed Address and Data Bus (AD)
« Address sent on first clock cycle

« Bus command sent on first clock cycle (C/BE)
« Data on subsequent clock cycles

* Bus Clock rates 33 to 512Mhz

* One Data transfer per clock is possible

« Supports Data Bursts (example to follow)

Computer System PCI

* When I/O devices are distributed in the
network, all can communicate through a
common parallel bus

* PCI connects at high speed to other
devices on a very short distances (<25
cm) using a parallel bus

PCI bus applications

Display monitor

Printer

Streaming displays
Network subsystems
Video card

Digital video capture card
Harddisk controller

PCI bus features

32 bit data bus extendible to 64 bit

Support both Synchronous and
Asynchronous transfer

Automatically detects the interfacing
systems and assign new address

Simplify the addition and deletion of the
system peripherals

|dentification numbers

A device identifies Its address space by
three identification numbers

 1/O port
 Memory locations
« Configuration registers

Each PCI device has address space
allocation of 256 bytes

PCI device

A 32-bit register in a PCI device for device ID
and allow auto-detection

Each device may use a FIFO controller with a
FIFO buffer for maximum throughput

Independent from IBM architecture

Number of embedded devices use PCI bus

PCI bridge

* PCI bridge switches the communication
between memory bus to PCI bus

* In most systems, the processor has a
single bus that connects to a PCI bridge

* Some processor integrates PCI bridge
within the processor to reduce the system
cost

PCI bridge/switch

Another configuration:
« Separate memory bus

* A separated I/O bus connected to PCI
switch to the 1/O devices

* Widely used in desktop PC

PCI bridge and buses

\DRAM|| ROM

Address bus

— Memory Bus

Processor! PCI bus Bridge
_ Data bus

of svstem' _
‘A Control bus
£ | I

LI PCT Bus
TAN | [Graphic Interface IO device | [[O Expansion
Tnterface Glzphic Interface | [Interface _

T ;\T Controller SCSI Expansion bus
o - controller N 1
system B With LCD 70 10 device

monitor or device

CRT

PCI

e 32 bit 33 MHz
throughput = 133 MBps

* 64 bit 66 Mhz
throughput = 533 MBps

PCIl Bus Commands (C/BE)

PCI Bus Command C/BE
Interrupt Acknowledge 0000
Special Cycle 0001
I/0 Read 0010
I/0 Write 0011
Reserved 0100
Reserved 0101
Memory Read 0110
Memory Write 0111
Reserved 1000
Reserved 1001
Configuration Read 1010
Configuration Write 1011
Memory Read Multiple 1100
Dual Address Cycle 1101
Memory Read Line 1110
Memory Write and Invalidate||1111

PCl Read Burst Cycle

Bus Clock

Frame #

AD————————< Datal XDaIaZ X Daia3 >— —————
CIBE#f = = = = —<Bus—Cmd>< BE#'s >. _____

IRDY#

TRDY#

DEVSEL#

o = -

Address Data Data Data
Phase Phase
Phasih L e Phase

| | |
Bus Transaction

Y

PCl Read Burst Cycle

Clock Cycle Description of PCI operation
0 Bus is idle
1 The initiator sets FRAME low, places the address on the Address/Data (ADx) lines,
and the bus command (read) on the Command/Byte Enable (C/BE) lines (address
phase).
2 The initiator tri-states the address and waits for the target to return a data value by

turning on its tri-state drivers. Device Select (DEVSEL) low indicates a target
device has decoded its address range and it is responding to the command. The
target drives TRDY high to indicate the target needs another clock cycle to respond
with the data.(data phase)

3 The target drives the data value and sets target ready (TRDY) low to indicate that
data is valid. When both IRDY and TRDY are low a data transfer occurs.

4 The target sets TRDY high to indicate it need an additional clock cycle for the next
data transfer.

5 The second data transfer occurs when both TRDY and IRDY are low. The initiator
saves the target data.

6 The target drives the data value, but the initiator requests an additional clock cycle
by set IRDY high.

7 The initiator sets IRDY low to complete the third data transfer. The initiator saves

the target data value, The initiator drives FRAME high to end the data phase.

8 All bus signals are tri-stated or driven to the inactive state.

PCIl Write Burst Cycle

Bus Clock

Frame #

AD = = = = —<Address>< Datal >< Data2 X Data3 >— -———
CIBE# = = = = —<3us—Cn‘dX BE-1 X BE-2 X BE-3 >- - -

IRDY#

TRDY#

DEVSEL#

-

Address Data Data Data
Phase Phase Phase Phase

e e e e >

Bus Transaction

PCIl Write Burst Cycle

Clock Cycle Description of PCI operation
0 Bus is idle
1 The initiator sets FRAME low, places the address on the Address/Data (ADXx) lines, and
the bus command (write) on the Command/Byte Enable (C/BE) lines (address phase).
2 The initiator places the data on the ADx lines and byte enables on C/BE lines, Device

Select (DEVSEL) low indicates a target device has decoded it’s address range and it is
responding to the command. When both IRDY and TRDY are low the target saves the
data. (data phase)

3 The initiator drives new data and byte enables. When both initiator ready IRDY and
TRDY are low a data transfer occurs and the target saves the data.

4 The initiator sets IRDY high and the target sets TRDY requesting an additional clock
cycle.

5 The initiator drives new data and byte enables and sets IRDY low. The initiator sets
FRAME high indicating the final data transfer.

6 The target drives the data value, but the initiator requests an additional clock cycle by
set IRDY high.

7 The initiator sets IRDY low to complete the third data transfer. The target saves the data
value.

8 All bus signals are tri-stated or driven to the inactive state.

Software for PCI devices

Each PCI device has a 256 byte
configuration area

At power up each device can respond with
manufacturer and device type information

Allows system to locate and load device
drivers at power up

Memory and I/O base addresses are
configured with software (no jumpers)

Accelerated Graphics Port (AGP)

* Newer Graphics cards were consuming
most of the PCI bus bandwidth

« Solution: Move graphics card to its own
PCI bus

* A connection with only 1 device is
technically a “port” and not a “bus.”

» Extra clock phase signals were added to
iIncrease clock rate 2X, 4X, and 8X

Logic Analyzer to capture PCI bus

[PCIGAX MVu ek O e e sl N PN M N Y 0
Fr | B 2| | - = [Time/Div: [50ns = unur} e - = N T
=|’] A"l I | '3°°|'| |m|] 2]2! | Foxeez 0 3. POXE4-2 0 3_ Delta Time: |0s -
€1: [50ns = c2 [sons =] Delta Time: [100ns = | PCINGA PCINGA PCINGA P
sample | an_H1 AD_LO mnemanics Timastamp =
] 6 [0DOQC0D0O [FZFFO000 [MEMORY WRLITE ADDRESS 44,431,000 us
Mag_Sample 7| -- 060DO00R | ATTRIBUTE CYCLE - DAWORD 30.00D ns
- 060D0008 ND_Shopp = NOT Set
Mag AD_Hi 060D0008 Relaxed Ordering = Wot Set
Mag 4D _Lo 0GODOCOR Tag = Dxd06 / 0dB
0BODOO0R Red. Bus #0x00D / 0dl3
Mag_Control 0BODO0DS Req. Deulce #0x000 / Odo
Mag_CLK 0E0D0ODS rREQ. Function #0x000 / odo
06000008 Byte Enahles - Bytes 3-0
Mag RSTH 8 80140050 | SINGLE DATA PHASE DISCONNECT 270.000 ns
Mag REQB4# I (T (S| FUR (DU] (| [NN [(S P P 9 F7FFO000 | MEMORY WRITE ADDRESS 180.000 ns
o (S S S DIDN SEEEE S DS PSS TS SRS S S 10 070D0008 | ATTRIBUTE CYCLE - DWORD 30.000 ns
Mag_ACQB4H 07000008 NO_Snoop = NOT SEt
Mag FRAME# 07000008 rRelaxed ardering = Not Set
07000008 Tag = DxQ07 / @
Mag DEVSELH 07000008 RECI. Bus #0x00D / 0d13
Mag STOPH 07000008 REC. DEVice #0x000 / OdO
R AL 07000008 REq. Function #0x000 / 0dD
Mag IRDY# —=—=---— | 070D0008 Byte Enahles - Bytes 3-0
Maa TRDYH T o T D e e e b e e A e T 11 | 00OQOODO | ==—=--—= SINGLE DATA PHASE DISCONNECT 270.000 ns
12 | 00OOO0D0O | FZFFO008 | MEMORY WRITE ADDRESS 180.000 ns
Mag C/BE[7]t 13 [————-———| 040D0008 ATTRIBUTE CYCLE - DWORD 30.000 ns
oq C/BEBIR 04000008 ND_Shoop - NOT SEt
| Mg C/BEle | 040D000R relaxed ardering = Not Set
Mag C/BE[S}H 040D000R Tag = DxQ04 / Odd
iog CIBELH 04000008 Red. Bus #0x00D / 0dl2
_S._L]_ 04000003 Req. Device #0x0D0 f Oco
Mag C/BE[S]H 04000008 Req. Function #0x000 / 0dD
Mag C/BE[2]# 040D000R Byte Enables - Bytes 3-0
L 14 80F70050 SINGLE DATA PHASE DISCONNECT 270.000 ns
Mag C/BE[1]H ig S;ngggg MEMORY WAITE ADDRESS 1§8.gog ns
= D ATTRIBUTE CTCLE - DWORD .000 NS
Mag C/BE[O 05000008 NO_Snoop = NOt Set
L’ 12 gggngggg RE1axeg gg?e;igg: not set o)
-~ & Dbl Tan = Dxi
& a_F 0 s | Y | BT | »|_]

Figure 2.15 A Tektronix logic analyzer setup to capture and decode PCI bus signals. This logic analyzer is actually an embedded system that runs Windows XP. A special PCI
interposer adapter card is used to quickly connect probes along with special firmware for the logic analyzer. Images courtesy of Nexus Technology.

Comparing ISA/PCI

ISA PCI
Adv:
16 bits 32 bits
slower faster
separated addr/data shared addr/data

only PC system support many systems
simple protocol PCI bridge

Third Generation Bus — PCI Express

* High-Speed Serial line(s) are used to transfer
PCI signals

* Fewer signal lines are used, but with much
nigher bandwidth on each signal line

— More stringent design restrictions on drivers, length,
loading, crosstalk, and terminations

Clock rates from 2.5 Gbps to 10 Gbps

Can combine serial lines into groups called
lanes to provide more bandwidth to a device

No changes needed in software — works the
same as PCI

PCI-E speed

Alane Is composed of a transmit and receive pairs
of differential lines (4 wires)

Per lane:
vl1.x: 250 MB/s
v2.0: 500 MB/s
v3.0: 1 GB/s

16 lane slot:
v1l.x: 4 GB/s
v2.0: 8 GB/s
v3.0: 16 GB/s

PCI-E links and lanes

PCI-E connectors

PCIl Express Example Connectors

BANDWIDTH
Single direction: 2
Dual Directions: 5 C

BANDWIDTH
Single direction: 10 Gbps,/800 MEps
Dual Directions: 20 Gbps/1.6 GBps

ARM Bus

 Introduced by ARM Ltd in 1996
* Widely used as the on-chip bus

ARM BUS

AMBA = ARM Memory Bus Architecture
AHB = ARM High performance Bus
APB = ARM Peripheral Bus

AMBA-AHB connects ARM core with
memory, external DRAM

AMBA-APB interfaces ARM core with
external low-speed I/O devices using
AMBA-APB bridge

AMBA

AMBA-AHB connects to 32-bit data and
32-bit address at high speed

AHB maximum bps bandwidth is 16 times
ARM processor clock

AMBA-APB bridge Is used to
communicate AHB bus to APB bus

The bridge communicates to memory
through AMBA-AHB

APB bus

Connect:

e [2C

* Touch screen

 SDIO

« MMC (multimedia-bus)
« USB

 CAN bus

ARM BUS

DRAM|| ROM

\gyp | -ddressbus [ANBA-AHB Memory High
‘ Databus Leed bus Bridge

P ' '
! nc_essm Control bus
of system 1
A AMBA-APB bus controller (Bridge)
AMBA-APB bus
L
APB low speed bus
SDIO 10 device I2C host| [CAN Touch

CDll’[liIlZJ]]r:‘l' screen
N
[-C bus CAN bus

Logic analyzer to capture ARM
Instruction segquence

[E8 80200 Demo _ (O] x]
da| B & (|8 (e A Al A6+
C1:/205 - cz |2 33 Delta Time: |-2.U5us 33 " Lock Delta Time
80200 80200
80200 80200 80200 80200 80200 :J é
Sample Address | DRAMAddr | HiData LoData Mnemonics Timestamp
195 Q03C ADDD8924 | AQDDE924 | (DESELECT) 10.500 ns
196 Q03C ADDDB924 | ADDD8924 | (DESELECT 5] 10.000 ns
197 Q03C ADDD8924 | AQDD8924 | (DESELECT) 10.000 ns __J{j
198 0036 ADDDR924 | AQDD8924 | (DESELECT b 10.000 ns
199 0036 ADDD8924 | AODD8924 | { CAS READ J(50~) 10.000 ns
200 0038 ADDD8924 | ADDDR924 | (DESELECT J [READ LATENCY] 10.500 ns
201 | O00DO89BO | 0038 | —=====-—- AQOOA784 | ANDGE R10, RO, R4, LSL 15 10.000 ns
000089B4 | 0038 ADQOAZAY | —====——= ANDGE R10, RO, R4, LSR 15
202 | 00DOB89ES8 | 0038 | —====—--- AQOQASSC | ANDGE R10, RO, R12, ASR RS 10.000 ns
000089BC | D038 AQODASED | ——===——- ANDGE R10, RO, RO, ROR 10
203 | 000DOB9CO | 0038 | —=====—- 64697246 | STRVSBTR?, [R9], #-246 10.500 ns
000089C4 | D038 00007961 | —======= ANDEQ R7, RO, R1, ROR 18
204 | 0000DB9CE | 003C | ======—- 414051EC | CMPMI RS, RO, R12, ROR 3 9.500 ns
000089CC | D03C 41473333 | -=====-- CMPMI R3, R7, R3, LSR R3
[205 | 000089DO | 003C | —=—————- 3FFODEA7 | SWICC/LO #FOOEA? 10.000 ns
Q0008804 | O03C P | g v [R LD 5 "
206 003C E92DD831 | ELAQCOOD | (DESELECT J [READ LATENCY] 10.500 ns
207 003C E24DD034 | E28DB0O18 | (DESELECT) 10.000 ns
208 003C E24DD034 | E28DB0O18 | (DESELECT) 10.000 ns
209 003C ADDDR924 | AQDD8924 | (DESELECT bl 10.000 ns
210 Q03C ADDO8924 | AQODDR924 | (DESELECT) 10.000 ns
211 Q03C ADQOB924 | AQDD8R924 | (DESELECT) 10.500 ns
212 Q03C ADDO8924 | AQDD8924 | (DESELECT) 10.000 ns
213 Q03C ADDOB924 | ADDD8924 | (DESELECT) 10.000 ns
214 Q03C ADDO8924 | ADDDS924 | (DESELECT) 10.000 ns
215 Q03C ADDDB924 | ADDD8924 | (DESELECT] 10.500 ns
216 Q03C ADDOB924 | ADDD8924 | (DESELECT bl 10.000 ns
217 0036 ADDDB924 | AQDD8924 | (DESELECT) 10.000 ns
218 0036 ADDD8924 | ADDD8924 | { CAS READ J(50~) 10.000 ns
219 0038 AQDDD8924 | ADDDR924 | (DESELECT J [READ LATENCY] 10.000 ns
220 | O0DOB9BO | 0038 | —=====—- AQQOA784 | ANDGE R10, RO, R4, LSL 15 10.000 ns
00008984 | 0038 AQQOAZAYG | ———————- ANDGE R10, RO, R4, LSR 15
221 | O0DOB9BS8 | 0038 | —=====-- AQQQASSC | ANDGE R10, RO, R12, ASR RS 10.500 ns
Q00089BC | D038 AQODASED | ——==---- ANDGE R10, RO, RO, ROR 10
222 | 00DOB9CO | 0038 | —=====--- 64697246 | STRVSBTR?, [R9], #-246 10.000 ns
000089C4 | D038 00007961 | —=====-- ANDEQ R7, RO, R1, ROR 18
223 | 0000B9CE | 003C | =====—m- 414051EC | CMPMI RS, RO, R12, ROR 3 10.000 ns
000089CC | D03C 41473333 | -=====-- CMPMI R3, R7, R3, LSR R3
224 | 00008900 | 003C | m====mm- 3FFODEA7 | SWICC/LO #FOOEA? 10.000 ns
00008904 | O03C 24F27DB6 | ——===——- LDRCS/HSETR?, [R2], #+DB6
225 | 00008908 | 003C | —====——- E1ADCOOD | MOV R12, RO, R13 10.500 ns -
000089DC | O03C E92DD831 | -====--- §TMDB R131!, R153R14,R12,R11,R5,R4,R0 v
[« | 3

Figure 2.16 A Tektronix logic analyzer with optional software setup to capture and disassemble an
ARM processor’s instruction execution sequence. This logic analyzer is actually an embedded system

Other Bus Interfaces

 EISA bus
32 bit, asymmetric 1/O channel
up to 33 MB/s data transfer rate
4GB address space, 8 DMA chanels
backward compatible with ISA

* Futurebus+
Designed by IEEE896 committee
64 bit and 160 MB/s

Other Bus Interfaces

« SCSI (small computer System Interface) bus
ANSI standard
4MB — 10 MB per second data transfer rate
mainly for computer to other devices,
WIDE SCSI uses wider cable

« Ultra SCSI
Support from 20MB — 80 MB per second

« TURBO Channel bus
32 bit, asymmetric synchronous I/O channel
12.5 — 25 MHz data transfer rate
Developed by DEC (digital)

Other Bus Interfaces

« XMI Bus
64 bits addressing
Upto 100 MB per second

* |[EEE-796 (Multi-bus)

iIntroduced by Intel for multiprocessors on the
same board, support 16 bit data and 24 bit

address buses
 VME bus (Euro standard)
Similar to Intel Multi-bus, 24 bit address bus
with 8/16/32 data buses

Questions?

