
1

I/O Interfacing Standards

for External Devices

2

Common Digital I/O Interfacing

Standards for External Devices

•Serial Port

•PS/2

•SPI, SCI, SI, and SDIO

•I2C

•Audio AC97

•USB

•Firewire

•GPIO

•PWM

•CAN bus

3

Serial communication

• Can support high speed communication

• Support Synchronous, Asynchronous, and

Iso-synchronous

4

General Purpose Input/Output

(GPIO)

• Sometimes it is called bus expander

• GPIO is an interface available on

microcontrollers/microprocessors

• It can act as input or output

• GPIO often are arranged into group of 8

pins

• GPIO port is often individually configurable

5

GPIO interface

6

GPIO Advantage

• Lower power about 1 A

• Can fit in small package

• Lower Cost

• Faster time to market

Pull-up Pull-down resistors

• Makes the circuitry susceptible to noise

• Without the input, the logic state is

unknown

• Pull-up resistor pulls the terminal to the

voltage supply

• Pull-down resistor pulls the terminal to the

ground

7

Pull-up resistors

8

Input example

9

Pull-Up

Pull-Down

Raspberry Pi

• Provide Pull-up resistors inside the board

10

Pin naming

• Board mode/BCM mode

11

LED Light up

import RPi.GPIO as GPIO

from time import sleep

GPIO.setmode(GPIO.BCM)

GPIO.setup(17, GPIO.OUT)

Print "All Set in Python! Let's Blink“

for i in range(1,10):

GPIO.output(17,GPIO.HIGH)

sleep(1)

GPIO.output(17,GPIO.LOW)

sleep(0.5)

GPIO.cleanup()

12

13

RS232C

• RS232C communication is between Data

Terminal Equipment (DTE) e.g. computer

and Data Communication Equipment

(DCE) e.g. modem

• RS232C (Recommend Standard for

Number 232C) specify communication

standard such as voltage level, terminating

resistances, cable length etc.

14

RS232C port connection

15

RS-232 Serial Interface

• Transmit and Receive data lines

• No clock signal exchanged – Sender and

receiver need to have same baud rate

• Baud rate is the clock rate of the bits

• Normal Bits: Start, 8 Data, Stop

• Voltage levels: a 0 is >3V and a 1 is <-3V

• Special RS232 voltage level converter

chips are typically used in interface

16

RS-232 standard

• Data rate from 20 kbps to over 1 Mbps

• Range up to 50 feet maximum

• It is robust interface up to 115,200 baud
rate (pulse per second)

• Voltage as high/low as 15 Volt

• Single-ended means communication is
over a single wire reference to ground

• There are 9 pins (DB-9) and 25 pins
format (DB-25)

17

RS-232 signal

1

0

18

RS-232 single ended uni-direction

19

RS-232 (DB9) male connector

Pin 1: Carrier Detect (CD)

Pin 2: Receive Data (RD)

Pin 3: Transmit Data (TD)

Pin 4: Data Terminal Ready (DTR)

Pin 5: Ground (GND)

Pin 6: Data Set Ready (DSR)

Pin 7: Request to Send (RTS)

Pin 8: Clear to Send (CTS)

Pin 9: Ring Indicator (RI)

20

Connect computer-modem

21

From DTE-DCE

22

Connect two PC directly

23

RS232 Handshaking

Assume modem wants to send data to PC

• RI indicate data available

• When modem connects, modem will send DCD
signal at time t0

• Modem will send DSR signal at time t1 when it
receive data to send

• PC will response with DTR at time t2

• Modem will send RTS at time t3

• PC response with CTS at time t4

RTS and CTS can also be sent again during the
transaction

24

UART

• UART is the name for the hardware used

for a RS-232 Serial Interface

• UART – Universal Asynchronous Receiver

Transmitter

• Early PCs had a UART chip, but this

functionality is now found inside a larger

chip that also contains other I/O features

25

UART transmission

26

UART initial communication

• Need to know how fast the data bits are coming

• Need to know where the starts bit begins

• Then, we know when to sample

27

UART communication

• Non-return to zero. In the idle state, the logic
state is 1.

• Start bit: transition to 0

• Data bit consists of start bit, 8 bit data, P-bit and
stop bit

• Data bits can be changed to 5,6,7, and 8 bits

• The stop bit can be for a minimum of 1.5T, 2T
instead of T, when T is normal interval

• P bit can be priority or for other purpose

• Stop bit: transition to 1

28

RS-232C Serial interface

transmission of an 8-bit data value

0 0 0 0 1 0 1 0

Start

Bit

0 1 2 3 4 5 6 7 Stop

BitData Bit number

Mark (1)

Space (0)

0x50 = ASCII “P”

LSB MSB

29

UART output 8 bits in 10T

30

UART output 7 bits in 9T

31

UART output 6 bits in 8T

32

UART output 8 bit in 11T

Raspberry Pi UART

• Since we use 0 and 3.3 V logic levels in Pi

(not the +/-12 V used by RS-232), we

need a 3.3 V to RS-232 level converter.

• Another option is to use USB to RS-232

converter

33

Rapberry Pi Setup

• Default configuration
Speed (baud rate): 115200

Bits: 8

Parity: None

Stop Bits: 1

Flow Control: None

• Checking the serial port
ls –l /dev/ttyS0, /dev/ttyS1

Or

ls –l /dev/ttyUSB0, /dev/ttyUSB1

34

Python Installation

• Install Python Serial Port

35

sudo apt-get install python-serial

Serial Port Programming

36

Run the program

• To run the program

python serialtest.py

• Output

37

Read Data from Serial Port

• Example of the Program

38

39

Keyboard interface to serial

interface to Microcontroller

40

Keyboard interface

• KBINT is an interrupt from keyboard
controller

• TxD is serial UART data output

• Bounce creates on pressing

– Each bounce creates a false pulse

• Scan clock generates clock to keep
checking key press for each interval

• Encoder is used to encode keyboard
output

41

Personal System 2 (PS/2) Interface

• IBM standard from an early PC

• Used in low-cost keyboards and mice

• Two signal lines: clock & data

• Keyboard sends key scan codes

• Mouse sends 3 byte data packets

• 11bits sent: Start, 8 Data, Parity, Stop

• Can also send commands to Mouse and
Keyboard

• Uses Open Collector TTL bus signals
– 1 Pull-up resistor

– Device can only force signal low

• Small microcontroller used in a PS/2 device

42

PS/2 Keyboard Transmission of a

Keyboard Scan Code

 PS/2 Clock

PS/2 Data

 Start 0 1 1 0 1 0 0 0 Parity Stop
 Bit Data Bits (low to high) Bit Bit

 Scan code 16H for “1” key

43

Serial Peripheral Interface (SPI)

• Developed by Motorola in the 1980s

• Works like a shift register for input and output

• 4 signals: clock, shift-in, shift-out, and chip
enable

• Chip enable turns on a tri-state driver on each
slave devices shift-out pin

• Two setup modes: one large shift register with
chip enables all connected or independent shift
registers each with a chip enable

• Common in A/D and D/A chips

44

Shift register

Data 0P1

Buffer
Write Data

07 …

Shift clock TxD

startstop

45

SPI

• Full duplex synchronous communication

• Four signals are used : SS’, MISO,MOSI, SCLK

• SS’ signal is used to decide whether this device

is slave or not (0 is slave)

• SPI device clock rates can range from 30 kHz to

3 MHz

46

SPI signals

47

SPI connection

48

The two SPI slave device

configuration options.

Master

CS0

CS1

CS2

SCLK

SDO

SDI

Slave

Slave

Slave

SDI SDO

SDI

SDO

SDI

SDO

Master

CS0

CS1

CS2

SCLK

SDO

SDI

Slave 0

Slave 1

Slave 2

SDI SDO

SDO

SDO

SDI

SDI

49

SPI programming

• Program clock rate

• Program master or slave devices

• Program negative/positive edge value

50

Serial Connect Interface (SCI)

• UART asynchronous port

• Full-duplex mode

• SCI programmable for reception and

transmission

• SCI is available in 68HC11, and 68HC12

51

SCI full duplex signals

52

SCI

• SCI baud rates are fixed with prescaling

bits

• Baud rate is selectable among 32 possible

value

• Support wake-up feature to wake up the

other side

53

Serial Interface (SI)

• Support both Synchronous and

Asynchronous transfer

• For Asynchronous, UART10T and

UART11T is supported

• For Synchronous, Universal Synchronous

Receiver and Transmitter

• SI is internal serial I/O for 8051

54

SI transfer in synchronous and

asynchronous mode

55

SI mode 0: Synchronous mode

56

SI modes

• Mode 0: Half duplex synchronous mode

• Mode 1,2,3: Asynchronous mode with

different setup for baudrate

SPI Programming

• Simple SPI Setup on Raspberry Pi

57

SPI Port

• Enable SPI

/etc/modprobe.d/raspi-blacklist.conf

Add '#' in front of the line spi-bcm2708. Save the file.

• Reboot
sudo reboot

• Check the device

lsmod

• Add Python library for SPI

sudo apt-get update

sudo apt-get install python-dev 58

Add Python SPI Wrapper

mkdir python-spi

cd python-spi

wget https://raw.github.com/doceme/py-

spidev/master/setup.py

wget https://raw.github.com/doceme/py-

spidev/master/spidev_module.c

sudo python setup.py install

59

https://raw.github.com/deceme/py-spidev/master/setup.py
https://raw.github.com/doceme/py-spidev/master/spidev_module.c

Python Code

import spidev

import time

spi = spidev.SpiDev()

spi.open(0,0)

while True:

resp = spi.xfer2([0x00])

print resp[0]

time.sleep(1)

60

Output

61

spi.open(0,0) will open bus 0, CE0

spi.xfer2 will keep CE asserted and read

data from slave

MCP3008

• ADC sensor: 10 bits data reading

• Provide SPI Interface

62

Circuit Connection

63

SPI Command

• Data flow:

– Start bit

– Control bit (4-bit length)

– Wait

• spi.xfer() is for active high

chip

• spi.xfer2() is for active low

chip

64

xfer2 command
• Send and receive the array of data

• For MCP 3008, the first command is 1.

• Next, we send the channel that we want to read the data

• Finally, we send the blank signal

• Read MCP3008 manual, for more details

65

66

import spidev

import time

import os

#start the SPI bus by opening the spi port

spi = spidev.SpiDev() spi.open(0,0)

#SPI port 0 opened and Device Chip Select set to 0

#function to read the channels of MCP3008

def readadc(channel):

value = spi.xfer2([1,(8+channel)<<4,0])

read = ((value[1]&3) << 8) + value[2]

return read

while True:

#creating the list for the different values of each channels

datalist = []

for i in range(0,8):

#read channel one by one using range of 0 to 8

data = readadc(i)

#append data into the datalist created

datalist.append(data)

#convert temperature value from data received

temperature = ((data * 330)/float(1023))-50

print temperature

Receive Data

ADC Data is 10 bits

• Received data = 00000000 01000010 01100010

value[0] = 00000000

value[1] = 01000010

value[2] = 01100010

Final data = (value[1] & 3) << 8 + value[2] = 610
67

68

Secure Digital Input Output (SDIO)

• From Secure Digital Association (over 700

companies) started from 3 companies in

1999 (Panasonic, Sandisk, Toshiba)

• Create a new memory card called SD

format for IO

• SDIO card has become popular in mobile

devices, PDA, digital cameras and

embedded systems

69

SD card

• Based on SD

technology

• SDHC (Secure Digital

High Capacity)

is the extension

of SD card

http://en.wikipedia.org/wiki/File:SD_Cards.svg
http://upload.wikimedia.org/wikipedia/commons/a/ac/SDHC_memory_card_-_8GB.jpeg

70

SDIO

• SD card size: 0.14cm x 2.4 cm x 3.2 cm

• SDIO host controller inside the card

• Controller may include SPI controller to support

SPI mode

• Can have up to 8 logical function inside SDIO

host controller

• Provide additional memory in SD format

• Functions include several protocol such as IrDA,

Wi-fi, Ethernet, GPS, Bluetooth, RFID

71

SDIO Function and card

• Up to 8 logical functions

• CRC data check during transfer

• Retransmission on error

• Support data transfer in block of bytes

• Data rate from 20 Mbps to 100 Mbps

72

Inter IC (I2C) bus

• Developed by Philips in 1980s

• Low pin count serial interface used to connect

chips on a circuit board

• Also used by Intel in the PC motherboard

System Management Bus (SMB)

• 7 bit address

• 1 bit Read/Write

• 8 Data bits

• Probably have one in your TV

73

I2C

• ICs mutually network through a common

synchronize serial bus

• I2C bus also support I/O interconnect

• 400 kbps up to 2 meters and 100 kbps for

longer distances

• Version 2 support up to 2.4 MHz

• Version 4 support 5MHz Ultra Fast Mode

74

Serial I/O I2C bus

75

Distributed I2C bus connection

76

I2C bus protocol

• The bus has two lines – one is for clock and
another one is bidirectional data

• It is a Master and Slave system

• Master can address 127 slaves at an instances

• Number of Masters can be connected on the bus

• However, only one Master can be active at a
time (use bus arbitration)

• Each devices has 7-bit address

• Master controls the clock, but a slave can slow
clock down by drive the clock low (clock
stretching)

77

I2C communication

78

I2C bus protocol

79

I2C interface serial transmission

of an 8-bit data value

1 2 7 8 1 29 8 93-7

ACK

ACK Signal
from Slave

Byte Complete Clock Line Held
Low while serviced

ACK

START STOP

SDA

SCL

S P

ACK Signal
from Receiver

MSB

3-6

Address Data

R/W

80

I2C bus field

• First field – similar to start bit in UART

• Second field – 7 bit address field

• Third field – 1 bit control field define read/write’

• Fourth field – 1 bit control field whether the
present data is an acknowledgement from slave

• Firth field – 8 bit data field (MSB first)

• Six field – 1 bit control field NACK (negative
acknowledgement) to tell slave that the
acknowledgement is not required

• Seven field -1 bit stop bit similar to UART

81

Microprocessor sends data

1. The microprocessor sends an I2C start sequence.

2. The microprocessor serially clocks out the 7-bit I2C
address of the slave with the R/W’ bit set Low (i.e.,
write operation)

3. The slave set ACK signal

4. The microprocessor serially clocks out the 8-bit data
value(s).

5. If the ACK is used to tell that the receiver get the data

6. The microprocessor sends a stop sequence.

(The microprocessor can keep sending the data as it
wishes, bus owner)

82

Microprocessor reads data

1. The microprocessor sends a start sequence.

2. The microprocessor serially clocks out the 7-bit I2C
address of the slave with the R/W’ bit set High.

3. The slave set ACK signal

4. The microprocessor serially clocks in the 8-bit data
value(s) off the bus from the slave.

5. If the ACK is used to tell that the Master get the data,
and the slave should keep sending next data

6. The microprocessor sends a stop sequence.

(The microprocessor can keep reading the data as it
wishes. If the ACK is set to 0, the slave will stop
sending the data)

Enable I2C on Pi

• Enabling the I2C Port
sudo raspi-config

83

Enable I2C on Pi

• Enabling the I2C on old Raspbian
in /etc/modules Add lines

i2c-bcm2708

i2c-dev

Edit module blacklist in /etc/modprobe.d/raspi-blacklist.conf

Add # to i2c-bcm2708

• Install I2C utilities
sudo apt-get install python-smbus i2c-tools

sudo reboot

84

Checking for connected devices

• Check the status for I2C0 or I2C1 port
sudo i2cdetect -y 0

//or

sudo i2cdetect -y 1

7 bits I2C address of all

found devices will be shown

85

Example of the code
#!/usr/bin/python

import smbus

bus = smbus.SMBus(1)

0 = /dev/i2c-0 (port I2C0), 1 = /dev/i2c-1 (port I2C1)

DEVICE_ADDRESS = 0x15

#7 bit address (will be left shifted to add the read write bit)

DEVICE_REG_MODE1 = 0x00

DEVICE_REG_LEDOUT0 = 0x1d

#Write a single register

bus.write_byte_data(DEVICE_ADDRESS, DEVICE_REG_MODE1,

0x80)

#Write an array of registers

ledout_values = [0xff, 0xff, 0xff, 0xff, 0xff, 0xff]

bus.write_i2c_block_data(DEVICE_ADDRESS,

DEVICE_REG_LEDOUT0, ledout_values) 86

Raspberry Pi Connection

87

Example of I2C message

88

Example: ADC using I2C

• ADC device (4 channels)

89

Circuit Connection

90

91

#data_adc.py

import wiringpi2

import time

DEBUG=False

LIGHT=0;TEMP=1;EXT=2;POT=3

ADC_CH=[LIGHT,TEMP,EXT,POT]

ADC_ADR=0x48

ADC_CYCLE=0x04

BUS_GAP=0.25

DATANAME=["0:Light","1:Temperature", "2:External","3:Potentiometer"]

class device:

Constructor:

def __init__(self,addr=ADC_ADR):

self.NAME = DATANAME

self.i2c = wiringpi2.I2C()

self.devADC=self.i2c.setup(addr)

pwrup = self.i2c.read(self.devADC) #flush powerup value

if DEBUG==True and pwrup!=-1:

print("ADC Ready")

self.i2c.read(self.devADC) #flush first value

time.sleep(BUS_GAP)

self.i2c.write(self.devADC,ADC_CYCLE)

time.sleep(BUS_GAP)

self.i2c.read(self.devADC) #flush first value

def getName(self):

return self.NAME

def getNew(self):

data=[]

for ch in ADC_CH:

time.sleep(BUS_GAP)

data.append(self.i2c.read(self.devADC))

return data

def main():

ADC = device(ADC_ADR)

print (str(ADC.getName()))

for i in range(10):

dataValues = ADC.getNew()

print (str(dataValues))

time.sleep(1)

if __name__=='__main__':

main()

92

93

Questions?

• What’s the speed and distance of I2C

(version 1)?

• I2C is?

– Master-slave -Peer-to-Peer -Broadcast

• How can the device initiate the talk to the

master?

94

Universal Serial Bus (USB)

• Developed by IBM, Intel, Microsoft, DEC, NEC,
and Northern telecom

• Serial Synchronous communication

• Seven bit address code

• Connecting from the device to the host computer
is called upstream port

• Connecting from host computer to the device is
called downstream port

• Tree (star) topology is used when the host is the
root of the tree, a hub is used to make a sub-
branch of the tree

• www.usb.org

95

USB Mini Hub

96

USB

• There are two interface type: type A and

type B

• Type A: plug on the upstream end (PC)

• Type B: plug on the downstream end

(device)

• Both types are polarized (cannot be

inserted in the wrong way)

• Cannot connects two PCs with USB

97

USB interface

98

Universal Serial Bus (USB)

• 1-bit serial sent over twisted pair wire

• Data transfer is in term of packet

• USB Packets contain address and data

• Up to 127 devices on bus

• Special purpose low-cost USB single chip

microcontrollers are used.

• Length is limited to a few feet – a bus and not a

network

• Data D+ or D- line can operate up to 3.3 volt

99

USB applications

• Flash memory cards

• Pen-like memory devices

• Digital cameras

• Printers

• Mouse-device

• Pocket-PC

• Video games

• Scanners

100

USB

• Serial transmission between host and

serial devices

• The data transfer is of four types

– Controlled data transfer – Bulk data transfer

– Interrupt driven data - Iso-Synchronous

transfer

• Maximum 127 devices can connect a host

101

USB

Standards:

• USB1.1 (a low speed 1.5 Mbps 3 meter

channel and high speed 12 Mbps 25

meters)

• USB 2.0 (high speed 480 Mbps 25 meter

channel

• USB 3.1 (can transfer up to 10 Gbit/s)

• Wireless USB (high speed 480 Mbps 3m)

102

Host connection to the devices or

node

• Using USB port driving software and host

controller

• Host computer or system has a host

controller, which connect to a root hub

• A hub is one that connects to other nodes

or hubs

• A tree-like topology

103

USB bus

104

USB bus

105

Dual Role Devices (DRDs)

• A device can be used as either USB host

or USB device.

• For example, a USB camera is USB host

when connects with a printer and is a USB

device when connects with a computer

106

Hub connection

• The root hub connects to the hub and

node at level 1

• A hub at level 1 connects to the hub and

node at level 2

• Only the nodes are presented at the last

level

• USB hubs can have up to 5 levels

107

USB device features

• Can be hot plugged (attached), configured and

used, reset, reconfigured and used

• Bandwidth sharing with other devices: Host

schedules the sharing of bandwidth among the

attached devices at an instance

• Can be attached and reattached

• Attaching and detaching USB device or host

without rebooting

• A device can be bus-powered or self-powered

108

A low-cost USB Microcontroller

is typically used in USB Devices

USB

Connector

+5V

D+

D-

GND

USB

Transceiver

Serial

Interface

Engine

(SIE)

bytes

bytes USB

Interface

Program & Data

(RAM & ROM)

General

Purpose

Microprocessor

I/O Ports

109

USB Data Rates

• USB 2.0 – Up to 480 Mbps

• USB 1.0 – 12 Mbps and 1.5 Mbps

• USB 2.0 supports USB 1.0 devices

• Needed higher USB 2.0 data rates for

external drives and video

• USB 3.0 is 10x USB 2.0

110

USB Enumeration

• Hot pluggable – longer power and ground

(outer) pins on USB connector

• At power up, software (OS) can read

product and vendor ID codes (PID/VID)

• Codes are used to locate device driver

• The required Device Driver is loaded

• The new device is assigned its USB

address (0..127) with a command

111

USB protocol

• USB bus cable has 4 wires: 1 for 5 V, 2 for

twisted pairs, 1 for ground

• Non Return To zero (NRZ) signal is used

• Synchronization clock encoded by

inserting synchronous code (SYNC) field

between each USB packet

• A polled bus

112

USB protocol

• Host controller regularly polls the presence
of the device

• The device does a handshaking through a
handshaking packet

• A CRC field in a data packet permits error
detection

• Least significant bit first

• Changing voltage on Data signal can
change the speed

113

USB Data format

Four different format support:

• Bulk asynchronous mode: transfer non-

critical data

• Isochronous mode: critical data

• Interrupt: from device to host

• Control: from host to control bus and send

request to devices

114

USB Packets

• Contain a packet type

• USB Address and Endpoint fields

• Each device can have several endpoints

• Endpoint is a hardware buffer between the
USB Serial Interface Engine (SIE) and the
firmware running on the microcontroller
(typically 8-64 bytes)

• CRC error code checked and Ack sent
back

115

USB Data Packet

• Sync bit

• Packet Identifier (PID)

• Device address

• Data

• Cyclic Redundancy Check (CRC)

Data is transmitted LSB bit first

116

USB Data Packet

117

Endpoint

118

The USB Serial Interface Engine

(SIE) handles USB packets

Token Packet H/S PktData Packet Token Packet H/S PktData Packet

Payload

Data

O

U

T

A

D

D

R

E

N

D

P

C

R

C

5

D

A

T

A

1

A

C

K

C

R

C

1

6

Payload

Data

O

U

T

A

D

D

R

E

N

D

P

C

R

C

5

D

A

T

A

0

A

C

K

C

R

C

1

6

D+

USB

Transceiver

Serial

Interface

Engine

(SIE)D-

Payload

Data

Payload

Data

A

C

K

119

Communication support

• Stream with no USB defined protocol

• Default control for provide access

• Message for control function for the device

120

Serial Interface Engine (SIE)

• Special hardware unit that handles

sending and receiving high speed serial

USB packets

• Serial data rates needed are too high to

handle using only software running on the

microcontroller

• Microcontroller only transfers bytes to/from

endpoints in the SIE

121

USB Software

• OS typically has a USB driver that handles

enumeration and loads driver for device

• Some common USB device drivers may

be provided with OS (storage, serial,

keyboard, mouse)

• Most other devices need a device driver

from the manufacturer

122

Figure 3.9 A USB protocol analyzer captures and displays the USB packets exchanged with a USB

Flash Drive (www.usbdeveloper.com) .

123

Wireless USB

• Wireless extension of USB 2.0 and it operates at

ultra wide band 3.1 GHz to 10.6 GHz

frequencies

• For short range personal area network (high

speed 480 Mbps 3 meter or 110 Mbps 10 meter

channel)

• FCC has recommend a host wire adapter and a

device wire adapter

• Wireless USB also supports dual-role devices

Python Interface

• It treats USB like UART communication:

#!/usr/bin/python

import serial

ser = serial.Serial('/dev/ttypUSB0', 4800, timeout = 1)

x = ser.read(1200)

print x

124

125

Questions?

• What’s the maximum speed and distance

of USB v2?

• Why USB can send the data in higher

speed and better distance than I2C?

• What’re other advantages/disadvantages

comparing with I2C?

126

Firewire

• It was initiated by Apple Inc.and developed by
IEEE 1394 working group

• IEEE 1394a and IEEE 1394b standard

• IEEE 1394a is up to 400 Mbps

• IEEE 1394b is up to 800 Mbps

• Serial isochronous transfer or asynchronous
transfer

• Transfer data at a guarantee rate

• Also used in real-time device and video
conference

127

Firewire application

• Multimedia streaming devices

• Digital Video cameras

• Digital camcorders

• Digital Video Disks (DVDs)

• Music system multimedia peripherals

• Some harddisk drives

• Some high-speed printers

128

isochronous or asynchronous

• Isochronous

– time-critical

– error-tolerant data

• asynchronous

– data isn’t error-tolerant

– not time-critical

129

Firewire

http://en.wikipedia.org/wiki/File:FireWire_cables.jpg
http://upload.wikimedia.org/wikipedia/commons/c/c5/FireWire-46_Diagram.svg

130

Firewire interface

• Six pin configuration (Firewire400):

power, ground, two twisted pair sets

• Nine pin configuration (Firewire800):

two additional ground shield

131

Firewire features

• Can interface up to 63 external devices

• Support plug and play and hot plugging

• Provides self-powered and bus powered support

• Twisted pairs

• Support multiple-host per bus

132

Daisy Chain configuration

• Can be up to 16 hop

• For Firewire800, up to 400 meter long

133

Another Firewire connection

134

Serial Firewire Bus

135

Data link layer

136

Firewire protocol layers

137

Comparison with USB

• Although USB 2.0 can run at higher rate

than Firewire400, in practice, USB 2.0

rarely exceeds 280 Mbps

• This is because for USB, host controller

has to manage low-level USB protocol

whereas Firewire delegates the task to the

interface hardware

• Simpler bus network

138

USB vs. Firewire

139

Questions?

• What’s the maximum speed and distance of

Firewire?

• Why Firewire is faster?

• What is the similarity and difference comparing

with USB?

• What do you think about USBv3 and Firewirev2?

140

Audio standard

• PCM

• AC97

• MP3

• WMA

141

Pulse Code Modulation (PCM)

• PCM is an audio format

• PCM is a digital

representation of analog

signal where the

magnitude of the signal

is sampled regularly by

uniformed interval

http://en.wikipedia.org/wiki/File:Pcm.svg

142

Audio

• For PCs, AC 97 is a common audio

standard

• Needs analog signals so A/D and D/A

hardware is used inside the Audio IC

• Analog mixers can add analog signals

from different sources

• Audio driver typically provided with OS

143

Figure 3.9 Realtek ALC202 AC97 Device Block Diagram

144

Pulse Width Modulation (PWM)

• PWM is a way for controlling analog
circuits with digital output

• By controlling analog circuit digitally,
system cost and power consumption can
be reduced

• Used in audio, motor control,
telecommunication

• The duty cycle is the proportional of the on
time to the regular interval or period

145

PWM with 10%, 50%, and 90%

duty cycle

146

PWM Signal

147

CAN and LIN Bus

• Serial Buses Developed for Automotive Industry
in mid 1980s – More advanced than RS232
Serial

• CAN is used to connect car subsystem
processors together, has multiple bus masters, &
uses 2 wires

• LIN is used to connect a processor with it’s
smart sensors, a single master, & uses only 1
wire

• LIN used at lower levels along with CAN at
higher levels in the system

• Both are now found in other embedded devices

148

CAN bus

• Two wires, half duplex, high-speed network

system

• Can link up to 2032 devices

• Up to 1 Mbps thus facilitates real-time control

• Sophisticated error detection features

• CAN 2.0 A uses 11 bit identifiers

• CAN 2.0 B uses 29 bit identifiers

• ECU = Engine Control Unit

149

Car Body Network with CAN & LIN

CAN

CAN

Power Train

Light

Sub-Bus

ITS

Window Lift

Interior
Light

Lock

Mirror

Lock

Mirror

Lock

Lock

Seat

Htng

Seat

Htng

Instruments

Central

Body Ctrl

Climate

Universal Motor

Universal Panel

Light

Roof

1 backbone, 13 nodes
8 subnets, 1-8 local nodes
52 nodes total

St-Wheel Panel

x6

Htng

Htng

Seat

Wiper

Trunk

WHtg

Universal Light

150

Controller Area Network (CAN)

• Messages contain a message number and

not an address

• Lower number messages have priority

• Each devices checks the message

number to see if it needs to handle the

message

• Data rates up to 1M Baud

• Special CAN chips are available

151

CAN 2.0 A message format

152

CAN 2.0 B message format

153

CAN controller topology

154

Advantages of CAN bus

• Protocol is highly reliable and error

resistant

• World-wide accept standard

• Multi-master topology

• Sophisticated error detection

• Short latency time for high priority

messages (real-time systems)

155

Local Interconnect Network (LIN)

• Can be implemented with a UART and

microcontroller firmware

• Data rates up to 20K Baud

• Only one bus master

• Lower cost, lower data rates, and 1 less

wire than CAN

156

Sync

Break

Sync

Field

Ident

Field

Data

Field

Data

Field

Data

Field

Data

Field

Check-

Sum

Field

Message Frame

Header Response

Interframe

Space or

BreakInterbyte Space

In_Frame Response Space

Figure 3.16 A Typical LIN Frame Consisting of Synch Break, Synch Field, Identifier, Data Field and

Checksum.

157

Figure 3.13 The Tektronix DPO7000 1-4 Channel Oscilloscope is an embedded device that runs

Windows XP. The display above is from an optional software package for the oscilloscope that

decodes and displays SPI bus signals. Images courtesy of Prodigy Test Solutions.

158

Figure 3.14 The Tektronix DPO7000 1-4 Channel Oscilloscope is an embedded device that runs

Windows XP. The display above is from an optional software package for the oscilloscope that

decodes and displays I2C bus signals. Images courtesy of Prodigy Test Solutions.

Questions?

159

