/O Interfacing Standards
for External Devices

Common Digital I/O Interfacing
Standards for External Devices

*Serial Port

PS/2

*SPI, SCI, SI, and SDIO
|2C

*Audio AC97

USB

‘Firewire

*GPIO

‘PWM

*CAN bus

Serial communication

« Can support high speed communication

« Support Synchronous, Asynchronous, and
|so-synchronous

General Purpose Input/Output
(GPIO)

Sometimes it Is called bus expander

GPIO is an interface available on
microcontrollers/microprocessors

It can act as input or output

GPIO often are arranged into group of 8
pins

GPIO port is often individually configurable

GPIO Interface

GPIO Advantage

Lower power about 1 uA
Can fit in small package
Lower Cost

Faster time to market

Pull-up Pull-down resistors

Makes the circuitry susceptible to noise

Without the Iinput, the logic state Is
unknown

Pull-up resistor pulls the terminal to the
voltage supply

Pull-down resistor pulls the terminal to the
ground

Pull-up resistors

VCC

IN OUT

j SW t SW

Connection with and without pull-up resistors

Pull-Up

Pull-Down

Input example

Voo Voo FT

Pull-Up Resistor
(Active)

Reading status

Pull-Down Resistor

(Disconnected)

Pull-Up Resistor

(Disconnected)

Reading status

m switch

Pull-Down Resistor\
(Active)

Raspberry Pl

* Provide Pull-up resistors inside the board

+ 330 Q

10

Pin naming

« Board mode/BCM mode

Physical/RasPi names (Board)

Broadcom names (BCM)

Left Right Left Right

Pin Function|Pin No.|Pin No.|Pin Function|Pin Function|Pin No.|Pin No.|Pin Function
3.3V 1 2 5V 3.3V 1 2 5V

12C0 SDA |3 4 DNC I2C0 SDA |3 4 DNC
[2CO0SCL |5 6 GND [2C0SCL |5 6 GND

GPIO 7 7 8 UART TX |GPIO 4 7 8 UART TX

11

LED Light up

import RPi.GPIO as GPIO
from time import sleep
GPI10.setmode(GPI10.BCM)
GPIO.setup(17, GPIO.0OUT)
Print "All Set in Python! Let's Blink®
foriin range(1,10):
GPIO.output(17,GPIO.HIGH)
sleep(1)
GPIO.output(17,GPIO.LOW)
sleep(0.5)
GPI10O.cleanup()

12

RS232C

« RS232C communication is between Data
Terminal Equipment (DTE) e.g. computer
and Data Communication Equipment
(DCE) e.g. modem

« RS232C (Recommend Standard for
Number 232C) specify communication
standard such as voltage level, terminating
resistances, cable length etc.

13

A0

A2 >

RS232C port connection

E DCE
DCD

_ DSR
DTR
RTS
CTS]

TxD RxD

-

RxD TxD =

O
—

-

-

Port at Modem

Serial

UART COM Port

-

DO-D7

RS-232 Serial Interface

Transmit and Recelve data lines

No clock signal exchanged — Sender and
receiver need to have same baud rate

Baud rate Is the clock rate of the bits
Normal Bits: Start, 8 Data, Stop
Voltage levels: a0Ois>3Vand al is <-3V

Special RS232 voltage level converter
chips are typically used in interface

15

RS-232 standard

Data rate from 20 kbps to over 1 Mbps
Range up to 50 feet maximum

t Is robust interface up to 115,200 baud
rate (pulse per second)

Voltage as high/low as + 15 Volt

Single-ended means communication Is
over a single wire reference to ground

There are 9 pins (DB-9) and 25 pins
format (DB-25)

16

RS-232 signal

A
6 Signal Stare 0’ Signal State ('
| T I IV S— I I ————
0 l I i l
J;‘" 04 — — i i o _i._ o Transition dead
VS A T T >
1 o] TIME
E _ 3 L i L i
-6 Signal State ‘1’ Signal State |
Y

17

RS-232 single ended uni-direction

Data —+ Data flow ———»
T:r_ ﬁ _|_||:| ﬂ

18

RS-232 (DB9) male connector

Pin 1:
PIn 2:
PIn 3:
PIn 4:
Pin 5:
PIn 6:
PN 7:
Pin 8:

PN 9:

Carrier Detect (CD)
Receive Data (RD)
Transmit Data (TD)

Data Terminal Ready (DTR)
Ground (GND)

Data Set Ready (DSR)
Request to Send (RTS)
Clear to Send (CTS)

Ring Indicator (RI)

19

Connect computer-modem

MAIN VMODEM MODEM DIFFERENT TIME-

MICROCOMPUTER SHARED DEVICES
TELEPHONE LINE
' = Y
= =
))[[o= | t—] [— | |)

20

From DTE-DCE

TxD
UART | RxD MODEM
“COM" N SERIAL
PORT | DSR PORT
DTE - DCE
RTS

CTS

21

Connect two PC directly

TD (pin 3) TD (pin 3)

DTE | DTE
RD (pin 2) RD (pin 2)
-

22

RS232 Handshaking

Assume modem wants to send data to PC
Rl indicate data available

* When modem connects, modem will send DCD
signal at time t0

 Modem will send DSR signal at time t1 when it
receive data to send

 PC will response with DTR at time t2
« Modem will send RTS at time t3
 PC response with CTS attime t4

RTS and CTS can also be sent again during the
transaction

23

UART

« UART Is the name for the hardware used
for a RS-232 Serial Interface

 UART — Universal Asynchronous Recelver
Transmitter
« Early PCs had a UART chip, but this

functionality iIs now found inside a larger
chip that also contains other I/O features

24

UART transmission

< 10 OR 11 -
i) —
-
Time

UART Serial
Bits for Data In a different
Start Bit Phase or

. Frequency
P Bit for State 1
(Optional) J and

State 0

Stop Bit

25

UART Initial communication

* Need to know how fast the data bits are coming
* Need to know where the starts bit begins
* Then, we know when to sample

\ / \ / \ /

start bit

sqmple sample sample sample

26

UART communication

Non-return to zero. In the idle state, the logic
state is 1.

Start bit: transition to O

Data bit consists of start bit, 8 bit data, P-bit and
stop bit
Data bits can be changed to 5,6,7, and 8 bits

The stop bit can be for a minimum of 1.5T, 2T
Instead of T, when T I1s normal interval

P bit can be priority or for other purpose
Stop bit: transition to 1

27

RS-232C Serial interface
transmission of an 8-bit data value

0x50 = ASCII “P”

0 0 0 0 1 0 1 0
Mark (1)

Space (0)

Start 0 1 2 3 4 5 6 7 Stop

Bit «—— Data Bit number > Bit
LSB MSB

28

UART output 8 bits in 10T

UART output 8 bits (01000100)

in10T format ..

.
P
] "--"'i_ -] -_' &* » I

-
dd *d *

L#### nlul *#l

|

29

UART output 7 bits in 9T

format 0 Start bit

— ,_.-*i'; . » smmm S
* L]

" =
d— *‘ ‘ »

A4 asa LL*L

Stop bit=1

30

UART output 6 bits in 8T

Stop bit =1

31

UART output 8 bit in 11T

Inl1T format [JrYRwEms

0100010

| Stop bits =2

32

Raspberry P UART

* Since we use 0 and 3.3 V logic levels In Pi
(not the +/-12 V used by RS-232), we
need a 3.3 V to RS-232 level converter.

* Another option Is to use USB to RS-232
converter

33

Rapberry Pi Setup

» Default configuration
Speed (baud rate): 115200

Bits: 8

Parity: None

Stop Bits: 1

Flow Control: None

« Checking the serial port

Is —| /dev/ttySO0, /dev/ttyS1
Or
Is —| /dev/ttyUSBO, /dev/ttyUSB1

34

Python Installation

* Install Python Serial Port

sudo apt-get install python-serial

left

wirowr [0] ° SV Power
wooson @) @ svrowe
ooy @) @ couma

3
is

s @ (©) @oumo

Ground o @mxsm

wor @ @ T2
ooz @ @ oon
Wirower (G) @ cmoze
amotomoso @) @ croume
wosmse @ @ oo

GPIO 11 (5T ° o CMo 8 (CLo)
Ground ° ° GMO 7 (CX1)

P1-25 P1-26

35

Serial Port Programming

import serial
port = serial.Serial("/dev/tTtyaMAB", baudrate=115208@, timeout=3.8)

while True:
port.write{"\r\nSay something:")
rcv = port.read(1e)
port.write("\r\nYou sent:" + repr{rcv))

36

Run the program

* To run the program
python serialtest.py

* Output

Say something:
You sent: 'abcabc’

37

Read Data from Serial Port

Example of the Program

import serial
import time

def readlineCR{port):
rv = "
while True:
ch = port.read()
rv += ch
if ch=="\r" or ch==""
return rv

port = serial.Serial("/dev/ttyaMAB", baudrate=11528@, timeout=3.8)

while True:
port.write("\r\nSay something:")
rcv = readlineCR{port)
port.write{"\r\nYou sent:" + repr{rcv))

38

Keyboard interface to serial
Interface to Microcontroller

Processor

or Microcontroller

Scan clock,
counter,
decoder
Interface

39

Keyboard interface

KBINT Is an interrupt from keyboard
controller

TxD is serial UART data output

Bounce creates on pressing
— Each bounce creates a false pulse

Scan clock generates clock to keep
checking key press for each interval

Encoder is used to encode keyboard
output

40

Personal System 2 (PS/2) Interface

* |IBM standard from an early PC

« Used in low-cost keyboards and mice
« Two signal lines: clock & data

« Keyboard sends key scan codes

* Mouse sends 3 byte data packets

« 11bits sent: Start, 8 Data, Parity, Stop

« Can also send commands to Mouse and
Keyboard

« Uses Open Collector TTL bus signals
— 1 Pull-up resistor
— Device can only force signal low

« Small microcontroller used in a PS/2 device

41

PS/2 Keyboard Transmission of a
Keyboard Scan Code

PS/2 Clock
S/ Cloc L| mEm
PS/2 Data — .
I |
Start 0 1 1 0 1 0 0 O Parity Stop
Bit Data Bits (low to high) Bit Bit

Scan code 16H for “1” key

42

Serial Peripheral Interface (SPI)

Developed by Motorola in the 1980s
Works like a shift register for input and output

4 signals: clock, shift-in, shift-out, and chip
enable

Chip enable turns on a tri-state driver on each
slave devices shift-out pin

Two setup modes: one large shift register with
chip enables all connected or independent shift
registers each with a chip enable

Common in A/D and D/A chips

43

Shift register

stop

start

Shiftclock —| 1 | P

Data

0 — TxD

Write Data R

Buffer

44

SPI

Full duplex synchronous communication
Four signals are used : SS’, MISO,MOSI, SCLK

SS’ signal is used to decide whether this device
IS slave or not (O is slave)

SPI device clock rates can range from 30 kHz to
3 MHz

45

SPI signals

. Slave Select input (for defining an

" SPI device as slave when SS active,

SS

MOSI —— else 1t 1s master)

MISO {_ At Master output and at slave mput
SCLK _} At master input at slave output

. Clock output at master and input at slave

46

SPI connection

Master SPI Slave SPI
$S — SS
MOSI —— | MOSI
MISO e MISO
SCLK | SCLK

a7

The two SPI slave device
configuration options.

>

>

Master - -»>
CS0 1
cs1 I

CS2 L—p
|

SCLK : >
SDO | - - = -

SDI >

[»

- - -

SDI

Slave
SDO

SDI
Slave

SDO

SDI
Slave

SDO

>
>
Master . ->
CS0 I
cst I
CS2 |— —>
|
|
SCLK | = >
spo 4+ - - |- 4
|
SDI : >
>
L_»

-—_-——D

Slave 0
SDI SDO |- by
1
1
1
Slave 1 I
1
SDI SDO F Pi
1
1
1
Slave 2 |
1
SDI SDO - &
1
1

48

SPI programming

* Program clock rate
* Program master or slave devices

* Program negative/positive edge value

49

Serial Connect Interface (SCI)

UART asynchronous port
Full-duplex mode

SCI programmable for reception and
transmission

SCIl is available in 68HC11, and 68HC12

50

SCI full duplex signals

Transceiver L .
_Atrecerver input from a transmitter
RxD S output
TxD 15 At transmitter output for a receiver
T nput
Transceiver Transceiver
UART
RxD < k48,
TxD > | RxD

UART

SCI

« SCI baud rates are fixed with prescaling
bits

« Baud rate Is selectable among 32 possible
value

« Support wake-up feature to wake up the
other side

52

Serial Interface (Sl)

Support both Synchronous and
Asynchronous transfer

—-or Asynchronous, UART10T and
UARTI11T Is supported

—or Synchronous, Universal Synchronous
Receiver and Transmitter

Sl is internal serial 1/0 for 8051

53

Sl transfer in synchronous and
asynchronous mode

SBUF Serial TxD/CLK, RxD/Data pins
transmit/receive data
butfer _ Atreceiver input from a transmitter
X TxD ...;_ output
RxD > At transmitter output for a receiver
T input
Processor P
Processor Processor
UART
S
RxD RxD
UART

54

S| mode 0: Synchronous mode

SBUF Serial
transmit/receive data

buffer

TxD/CLK. RxD/Data Pins

) From a transmitter Processor ourput

|, at receiver input

\ CLK

Data —— At transmitter output for a receiver
. Processor input
Processor P
Processor Processor
UART 1
CLK ol CLK
Data > | Data
UART

55

S| modes

* Mode 0O: Half duplex synchronous mode

* Mode 1,2,3: Asynchronous mode with
different setup for baudrate

56

SPI Programming

« Simple SPI Setup on Raspberry Pi

57

SPI Port
 Enable SPI

/etc/modprobe.d/raspi-blacklist.conf
Add '#' in front of the line spi-bcm?2708.

 Reboot

sudo reboot

e Check the device
lsmod
« Add Python library for SPI

sudo apt-get update
sudo apt-get install python-dev

Save the file.

left
bottom top

P1-01 P1-02
wirowsr [O] o SV Powes

ooson @) @ svrowe
woisy ©) @ couma
% @ © woumw
cromd @) () om0 15 0
o © © 22
T © O o
woz @ @ con
wirower (G) @ cmoze
cmotomoso @) @ croume
wosmse @ @ cmozs
aorsan @ @ croscn
coms @ @ croricen
P1-25 P1-26

bottom top
right

58

Add Python SPI Wrapper

mkdir python-spi
cd python-spi
wget https://raw.github.com/doceme/py-

spidev/imaster/setup.py
wget https://raw.github.com/doceme/py-

spidev/imaster/spidev_module.c
sudo python setup.py install

59

https://raw.github.com/deceme/py-spidev/master/setup.py
https://raw.github.com/doceme/py-spidev/master/spidev_module.c

Python Code

Import spidev
import time

spi = spidev.SpiDev()

spi.open(0,0)

while True:
resp = spi.xfer2(]0x00])
print resp[0]
time.sleep(1)

60

spil.open(0,0) wil
spi.xfer2 will kee
data from slave

Output

open bus 0, CEO

0 CE asserted and read

Vreft+ Vee +33
Apalog . CLK
In
Vref- Data MISO
Grd cs CEO
GND
TLC549CP
8 bit ADC L

Raspberry Pi SPI

61

MCP3008

 ADC sensor: 10 bits data reading
* Provide SPI Interface

1 CHO VDD ig
+ CHI VREF |3
=—| CH2 AGND (—
] CH3 CIK [—5
=— CH4 DOUT [—=
=— CH5 DIN [—=
=— CH6 CSN —
CH7 DGND
MCP3008

0O ~1 OhLh B L) D —

Circult Connection

ca-Jjonjun] B lwjro]—

P 5V
3.3V — [oD
— g f; — 7] P6
U1
—17 3 5 TX
CHO VDD }g sl — 9 10 4 RX
CH1 VREF — — 11 12 3 6
CH2 AGND }; | — 113 14 I 5 b3
CH3 CLK 5 15 16 1 p4
CH4 DOUT [—1 17 18
CH5 DIN }é -2 ﬁ%sé 19 20 p—
CH6 CSN {— > — 21 22—
CH7 DGND 23 24
MCP3008 25 26
e EasPi Bus Connector
= MALE
GND CSN

63

SPI Command

« Data flow:
— Start bit
— Control bit (4-bit length)
— Walit
 spi.xfer() is for active high
chip
 spi.xfer2() is for active low
chip

Single-ended mode (D3)

1

D2

D1

DO annel to rea

1

1

64

xfer2 command

« Send and receive the array of data

 For MCP 3008, the first command is 1.

* Next, we send the channel that we want to read the data
* Finally, we send the blank signal

« Read MCP3008 manual, for more detalls

CLK

MOSI START : D3 D2 i DI i DO START

cs
MISO N
NULL . DATA™ ™. =

import spidev
Import time
Import os

#start the SPI bus by opening the spi port
spi = spidev.SpiDev() spi.open(0,0)
#SPI port 0 opened and Device Chip Select set to 0
#function to read the channels of MCP3008
def readadc(channel):
value = spi.xfer2([1,(8+channel)<<4,0])
read = ((value[1]&3) << 8) + value[?2]
return read
while True:
#creating the list for the different values of each channels
datalist = []
foriin range(0,8):
#read channel one by one using range of 0 to 8
data = readadc(i)
#append data into the datalist created
datalist.append(data)
#convert temperature value from data received
temperature = ((data * 330)/float(1023))-50
print temperature 66

Recelve Data

ADC Data is 10 bits
 Received data = 00000000 01000010 01100010
value[0] = 00000000

value[1] = 01000010
value[2] = 01100010

=

Final data = (value[l] & 3) << 8 + value[2] = 610

67

Secure Digital Input Output (SDIO)

* From Secure Digital Association (over 700
companies) started from 3 companies In
1999 (Panasonic, Sandisk, Toshiba)

* Create a new memory card called SD
format for 1O

« SDIO card has become popular in mobile
devices, PDA, digital cameras and
embedded systems

68

SD card

e Based on SD
technology

« SDHC (Secure Digital
High Capacity)
IS the extension
of SD card

69

http://en.wikipedia.org/wiki/File:SD_Cards.svg
http://upload.wikimedia.org/wikipedia/commons/a/ac/SDHC_memory_card_-_8GB.jpeg

SDIO

SD card size: 0.14cmx 2.4cm x 3.2 cm
SDIO host controller inside the card

Controller may include SPI controller to support
SPI mode

Can have up to 8 logical function inside SDIO
nost controller

Provide additional memory in SD format

~unctions include several protocol such as IrDA,
Wi-fi, Ethernet, GPS, Bluetooth, RFID

70

SDIO Function and card

Up to 8 logical functions
CRC data check during transfer w720
Retransmission on error o

Support data transfer in block of bytes

Data rate from 20 Mbps to 100 Mbps

71

Inter IC (1°C) bus

Developed by Philips in 1980s

Low pin count serial interface used to connect
chips on a circuit board

Also used by Intel in the PC motherboard
System Management Bus (SMB)

7 bit address

1 bit Read/Write

8 Data bits

Probably have one in your TV

72

12C

|Cs mutually network through a common
synchronize serial bus

1°C bus also support 1/O interconnect

400 kbps up to 2 meters and 100 kbps for
longer distances

Version 2 support up to 2.4 MHz
Version 4 support 5SMHz Ultra Fast Mode

73

Serial 1/O 12C bus

Serial IO bus

10 Device | IO Device IO Device 10 Device

Interface Interface Interface Interface

Processor Processor Processor Processor of
of system B| of system C| of system D system E

74

Distributed 12C bus connection

Dat ki
ata
=Y
o=
o P
£0
b Clock
g E Data
o P
£0
Clocks
Clock E"
© 2
h =3
o P
Data I=¥s
=

12C bus protocol

The bus has two lines — one Is for clock and
another one is bidirectional data

It is a Master and Slave system
Master can address 127 slaves at an instances
Number of Masters can be connected on the bus

However, only one Master can be active at a
time (use bus arbitration)

Each devices has 7-bit address

Master controls the clock, but a slave can slow
clock down by drive the clock low (clock
stretching)

76

12C communication

Miaster 0x01 0x02 0x03
Servant Servant Servant
IC-1 IC-2 IC-3 IC-4
Micro- E°PROM Temp. LCD
processor Sensor Display
F 3 Y & F 3 ry &
Clock
Date ¥ ¥ ¥
n

7
Start —This——* T -t 88— l
bit Slave Address _ Data bits _
Read/ Stop
l Write Bat
Alwavys
Always Asserted
Asserted by L, Ack Bits «— by master
Ivlaster

Used by the recetver of the data
to mndicate successful reception

77

12C bus protocol

Y

A

8T = - 8T

Az

> [ime

Y

- 7T
Slave Address

::::::::::::: Start Bit Data Bits
Start Address
Bit NACK Bit

““““““ Read/Write

AAAXRAL |ndicating Stop Bit
Bit

f}fﬁ% Acknowledgement
- Bit

12C interface serial transmission
of an 8-bit data value

ACKS|g I ACKSg I |
from Sa fro er

!/—x—>c3<—><—\/_x_>C)<)(/\mlL
I
I

Clack Line Held | |
Byte Complete Lowwhile ser\/lced

o A V-V N

| S | » R/W ACK < » ACK | P |

START Address Data STOP

79

12C bus field

First field — similar to start bit in UART
Second field — 7 bit address field
Third field — 1 bit control field define read/write’

~ourth field — 1 bit control field whether the
oresent data is an acknowledgement from slave

~irth field — 8 bit data field (MSB first)

Six field — 1 bit control field NACK (negative
acknowledgement) to tell slave that the
acknowledgement is not required

Seven field -1 bit stop bit similar to UART

80

Microprocessor sends data

The microprocessor sends an |12C start sequence.

The microprocessor serially clocks out the 7-bit 12C
address of the slave with the R/W’ bit set Low (i.e.,
write operation)

The slave set ACK signal

The microprocessor serially clocks out the 8-bit data
value(s).

If the ACK Is used to tell that the receiver get the data
The microprocessor sends a stop seguence.

(The microprocessor can keep sending the data as it
wishes, bus owner)

81

Microprocessor reads data

The microprocessor sends a start sequence.

The microprocessor serially clocks out the 7-bit 12C
address of the slave with the R/W’ bit set High.

The slave set ACK signal

The microprocessor serially clocks in the 8-bit data
value(s) off the bus from the slave.

If the ACK is used to tell that the Master get the data,
and the slave should keep sending next data

The microprocessor sends a stop sequence.

(The microprocessor can keep reading the data as it
wishes. If the ACK is set to 0, the slave will stop
sending the data)

82

Enable I12C on Pi
* Enabling the 12C Port

sudo raspi-config

{ Raspberry Pi Software Configuration Tool (raspi-config) }

Al Overscan You may need to configure oversca
A2 Hostname Set the visible name for this Pi
A3 Memory Split Change the amount of memory made
A4 SSH Enable/Disable remote command lin
AS Device Tree Enable/Disable the use of Device
A6 SPI Enable/Disable automatic loading
A8 Serial Enable/Disable shell and kernel m
A9 Audio Force audio out through HDMI or 3
AQ Update Update this tool to the latest ve
<Select> <Back>

83

Enable I12C on Pi
* Enabling the 12C on old Raspbian

In /etc/modules Add lines

12c-bcm2708

12c-dev

Edit module blacklist in /etc/modprobe.d/raspi-blacklist.conf
Add # to i2c-bcm2708

* Install I12C utilities
sudo apt-get install python-smbus i2c-tools
sudo reboot

84

Checking for connected devices

* Check the status for 12CO0 or I12C1 port

sudo i2cdetect -y O

/lor

sudo i2cdetect -y 1

7 bits 12C address of all
found devices will be shown

85

Example of the code

#!/usr/bin/python

Import smbus

bus = smbus.SMBus(1)

0 = /deVv/i2c-0 (port 12C0), 1 = /dev/i2c-1 (port 12C1)

DEVICE_ADDRESS = 0x15

#7 bit address (will be left shifted to add the read write bit)
DEVICE_REG_MODE1 = 0x00
DEVICE_REG_LEDOUTO = 0x1d

#Write a single register

bus.write_byte data(DEVICE_ADDRESS, DEVICE_REG MODEL1,
0x80)

#Write an array of registers

ledout_values = [Oxff, Oxff, Oxff, Oxff, Oxff, Oxff]
bus.write_i2c_block data(DEVICE_ADDRESS,
DEVICE_REG_LEDOUTO, ledout_values) 86

Raspberry Pi Connection

3v3
H
- = 3.3V
- 12C1_SDA
scL 12C1_SCL
Gnd T: F T—
I ~ TS\GND
Master (RPi) Slave Slave Slave
(PWM LED or Servo) (OLED control) (LCD control)

example: example: example:
NXP PCA968S Solomon Systech Microchip
SSD1306 MCP23008

20 e H Y

GND

Example of 1°C message

DS1307 DS1307
DS1307 Increment Increment
Set Pointer Pointer Pointer
Register Register Register
MASTER MASTER DS1307 MASTER MASTER and MASTER and MASTER
SEND SEND SEND SEND genD SEND SEND SEND SEND SEND
SLAVE FCID + SLAVE REGISTER SLAVE REGISTER VE REGISTER
START ADDRESS ADDRESS DATA (n) DATA (n#1) STOP
7-Bits + WRITE 8-Bits 8-Bits 8-Bits
* 12C BUS
<Slave Address> <Word Address > <Data(n)> <Data(n+1)> /
S| 1101000 | O | A XOOOXXXX | Af XXXXXXXX | A] XXXXXXXX | A| P
<R'-ﬁf> \
ADDRESS | BIT7 | BIT6 | BITS | BIT4 | BIT3 | BIT2 | BIT1 | BITO | FUNCTION | RANGE
00H CH 10 Seconds Seconds | Seconds 00-59
01H 0 10 Minutes Minutes Minutes 00-59
12 e 1-12
02H 0 How | 10 Hours Hows | ~AMPM
24 PM Hour 00-23
= AM =
03H 0 0 0 0 0o | DAY Day 01-07
04H 0 0 10 Date Date Date 01-31
10 R
05SH 0 Mounth Month Month 01-12
06H 10 Year Year Year 00-99
07H ouT| o | o |SQWE| o | o0 | RSI | RSO | Control —
08H-3FH RAM | oon-FFH
Slave Add=0x68 2.3 2|

88

Example: ADC using I1°C

 ADC device (4 channels)

12C Raspberry 12C
Device Pi GPIO Device

VCC 1 2

SDA 3 4

SCL 3 6 GND

89

Circuit Connection

VCC

VCC

W
RK
@A
Q
o)
& _
O 9/>\</
> R ¥
o
N W—T—9
kL. RW
o |
o O)
=
_ | | [0)
_ | |
el E Bl 5] 2] 9] @
O L 0O F O =2 < »
DENX%CDS
> K o W0 v o own >
= >
16G840d
—w0123
O £ £ £ £ o
< <« < < < <

-
-

GND

#data_adc.py

import wiringpi2

import time

DEBUG=False

LIGHT=0,TEMP=1,EXT=2,POT=3

ADC_CH=[LIGHT,TEMP,EXT,POT]

ADC_ADR=0x48

ADC_CYCLE=0x04

BUS_GAP=0.25

DATANAME=["0:Light","1:Temperature", "2:External”,"3:Potentiometer"]

class device:

Constructor:

def _init_ (self,addr=ADC_ADR):
self. NAME = DATANAME
self.i2c = wiringpi2.12C()
self.devADC=self.i2c.setup(addr)
pwrup = self.i2c.read(self.devADC) #flush powerup value
if DEBUG==True and pwrup!=-1:

print("ADC Ready")

self.i2c.read(self.devADC) #flush first value
time.sleep(BUS_GAP)
self.i2c.write(self.devADC,ADC_CYCLE)
time.sleep(BUS_GAP)
self.i2c.read(self.devADC) #flush first value

def getName(self):
return self. NAME

def getNew(self):
data=[]
for ch in ADC_CH:
time.sleep(BUS_GAP)
data.append(self.i2c.read(self.devADC))
return data

def main():
ADC = device(ADC_ADR)
print (str(ADC.getName()))
for i in range(10):
dataValues = ADC.getNew()
print (str(dataValues))
time.sleep(1)

if _name_ =='_main__":

main()

92

Questions?

« What’s the speed and distance of 12C
(version 1)?

e |2C is?
— Master-slave -Peer-to-Peer -Broadcast

* How can the device Initiate the talk to the
master?

93

Universal Serial Bus (USB)

Developed by IBM, Intel, Microsoft, DEC, NEC,
and Northern telecom

Serial Synchronous communication
Seven bit address code

Connecting from the device to the host computer
IS called upstream port

Connecting from host computer to the device is
called downstream port

Tree (star) topology is used when the host is the
root of the tree, a hub is used to make a sub-
branch of the tree

WWW.USDb.org

94

USB Mini Hub

USB MINI HUB

PC
Portl Port?2 Port3 Portd
(=) = = = ==
Upstream port Downstream ports
(from PC) (to more devices)

95

USB

There are two Interface type: type A and
type B

Type A: plug on the upstream end (PC)

Type B: plug on the downstream end
(device)

Both types are polarized (cannot be
Inserted in the wrong way)

Cannot connects two PCs with USB

96

USB Interface

==)

Tvpe A socket
(from front)

Pin connections

Pin No.

Signal

+ 5V Power

- Data

+ Data

Ground

97

Universal Serial Bus (USB)

1-bit serial sent over twisted pair wire
Data transfer is in term of packet

USB Packets contain address and data
Up to 127 devices on bus

Special purpose low-cost USB single chip
microcontrollers are used.

Length is limited to a few feet — a bus and not a
network

Data D+ or D- line can operate up to 3.3 volt

98

USB applications

~-lash memory cards
Pen-like memory devices
Digital cameras

Printers

Mouse-device
Pocket-PC

Video games

Scanners

99

USB

e Serial transmission between host and
serial devices

* The data transfer is of four types
— Controlled data transfer — Bulk data transfer

— Interrupt driven data - Iso-Synchronous
transfer

e Maximum 127 devices can connect a host

100

USB

Standards:

USB1.1 (a low speed 1.5 Mbps 3 meter
channel and high speed 12 Mbps 25
meters)

U
C

SB 2.0 (high speed 480 Mbps 25 meter
nannel

U

SB 3.1 (can transfer up to 10 Gbit/s)

Wireless USB (high speed 480 Mbps 3m)

101

Host connection to the devices or
node

Using USB port driving software and host
controller

Host computer or system has a host
controller, which connect to a root hub

A hub Is one that connects to other nodes
or hubs

A tree-like topology

102

USB bus

Root USB host controller in a Computer or
Tub Microcontroller
u

Serial USB bus

USB Device USB Device USB Device USB Host

Interface Intertace Intertace controller
Node Node
Device B Device C Device/ Processor of HUb
System D systemE "

®
-
wie®

Dual role device Node/Hub
Serial USB bus

103

USB bus

Computer
system A USB host Controller
|
|
H i i i
Node/| Camera Pen like Printer USB host
Hub memory Controller
SB host device Node Hub I
‘onfroller Node Mobile phone
Printer

Node

104

Dual Role Devices (DRDs)

A device can be used as either USB host
or USB device.

* For example, a USB camera is USB host
when connects with a printer and is a USB
device when connects with a computer

105

Hub connection

The root hub connects to the hub and
node at level 1

A hub at level 1 connects to the hub and
node at level 2

Only the nodes are presented at the last
level

USB hubs can have up to 5 levels

106

USB device features

Can be hot plugged (attached), configured and
used, reset, reconfigured and used

Bandwidth sharing with other devices: Host
schedules the sharing of bandwidth among the
attached devices at an instance

Can be attached and reattached

Attaching and detaching USB device or host
without rebooting

A device can be bus-powered or self-powered

107

A low-cost USB Microcontroller
IS typically used in USB Devices

s5v | |
| bytes
> I
D+ NG Serial bytes USB Program & Data “
I
p- |- q_l/ Iidiiegi > Interface | (RAM & ROM) ‘m
: Engine I
I
I 4 (SIE) General I
GND | ! Purpose I
I .
USB : USB Microprocess :
Connector | Transceiver :
I
I

108

USB Data Rates

JSB 2.0 — Up to 480 Mbps
USB 1.0 — 12 Mbps and 1.5 Mbps
USB 2.0 supports USB 1.0 devices

Needed higher USB 2.0 data rates for
external drives and video

USB 3.0is 10x USB 2.0

109

USB Enumeration

* Hot pluggable — longer power and ground
(outer) pins on USB connector

* At power up, software (OS) can read
product and vendor ID codes (PID/VID)

* Codes are used to locate device driver
* The required Device Driver Is loaded

 The new device Is assigned its USB
address (0..127) with a command

110

USB protocol

USB bus cable has 4 wires: 1 for 5V, 2 for
twisted pairs, 1 for ground

Non Return To zero (NRZ) signal Is used

Synchronization clock encoded by
iInserting synchronous code (SYNC) field
between each USB packet

A polled bus

111

USB protocol

Host controller regularly polls the presence
of the device

The device does a handshaking through a
handshaking packet

A CRC field in a data packet permits error
detection

Least significant bit first

Changing voltage on Data signal can
change the speed

112

USB Data format

Four different format support:

* Bulk asynchronous mode: transfer non-
critical data

* |sochronous mode: critical data
* Interrupt: from device to host

 Control: from host to control bus and send
request to devices

113

USB Packets

Contain a packet type
USB Address and Endpoint fields
Each device can have several endpoints

Endpoint is a hardware buffer between the
USB Serial Interface Engine (SIE) and the
firmware running on the microcontroller
(typically 8-64 bytes)

CRC error code checked and Ack sent
back

114

USB Data Packet

* Sync bit

« Packet Identifier (PID)

* Device address

* Data

* Cyclic Redundancy Check (CRC)

Data Is transmitted LSB bit first

115

USB Data Packet

SYNC PID Den_v: _E_.J_L_d_d_ressl Euc_l _Eicfmt CRC Token packets
o000l IXNLINXX EXXXXXX XXXX IXXXX
SYNC PID Data CRC .
00000001 Yyve TEEE (0-1023 bytes) e |6 Data packets
SYNC PID P _
00000001 XXX TAAX Handshake packets

r

3

Packet Identifier Nibble Codes:

OUTPUT = 0001

INPUT = 1001 Tokens
SET UP = 1101

DATAOD = 0011

DATA1 = 1011 } Data
ACK = 0010

NAK = 1010 Hankshake
STALL = 1110

116

Host

[Add[Endpaint][[rirection]

Endpoint

| USB Device

Addr=2

EFD Qut |—

lusB Device

EF1In -

Addr=23

——{ EF10Out

by Function

—_— - e e — e —_— - — =

I
I
| - L _____. —

I
I
I
I
I
l —

| er.n e

by Function

117

The USB Serial Interface Engine
(SIE) handles USB packets

o
U
T

000>
10 Zm
aOxo

\ Token Packet)

\,

Payload

Data

Data Packet)

orRr0OXO

@)
U
T

000>

vOZm

aOxO

\ Token Packet) Data Packet

.
Payload
Data

or0OXTO

>
<

o

Transceiver

N
Vv

USB

Serial
Interface

Engine
(SIE)

J

Payload
Daa

Payload
Daa

A
C
K

118

Communication support

« Stream with no USB defined protocol
» Default control for provide access
* Message for control function for the device

119

Serial Interface Engine (SIE)

« Special hardware unit that handles
sending and receiving high speed serial
USB packets

« Serial data rates needed are too high to
handle using only software running on the
microcontroller

* Microcontroller only transfers bytes to/from
endpoints in the SIE

120

USB Software

* OS typically has a USB driver that handles
enumeration and loads driver for device

« Some common USB device drivers may
be provided with OS (storage, serial,
keyboard, mouse)

 Most other devices need a device driver
from the manufacturer

121

&= USBViewer

File Setup Trigger Display Search Wiew About
| a0F Frame 38 CRC 1D A Acquizition Control
[Address 3 Endpoint 1 |
DATAD |[55534253E8F31A 821600000001 | |
ALK,
[soF Frame 38C CRC 12 |
[rata Mavigation
[out Address 3 Endpoint 2 |
Drefine Search |
DATAT | BEE34243ESFS1A821200000080000C030000007120000000000000000000000
ACK Search |
| SOF Frame 380 CRC 0D |
" From Start ¢ From Cursor
[N Address 3 Endpoint 1 |
Shrink — v
DATAT || 7000 05 00 00 00 00 0A 00 00 00 00 20 00 00 00 00 00 eSS
ALK,
| SOF Frame 38E CRC 05 |
| N Addiess 3 Endpeint 1 |
DATAD || 5553 42 53 E4 F8 14 52 00 0000 00 00 —
ACK —
[soF Frame 39F CRC 1A | =
[soF Frame 390 CRCO7 | —
[our Address 3 Endpoint 2 | —
DATAD || 5553 42 43 E6 F6 14 82 16 000000 00 00 06 15 11 00 00 1800 00 00 00 00 00 00 00 00 00 00 —
ALK, —
[soF Frame 391 CAC 18 | —
[out Address 3 Endpoint 2 | —
DATAY |DD poooosooooooOOOOODO200TCOABOO40000000000000007 —
ALK, —
[s0F Frame 332 CAC10 | —
| N Addiess 3 Endpeint 1 | —
DATAT ||55534253 E5 F5 148215000000 01 =
ATK 4 —
@ — hd

Figure 3.9 A USB protocol analyzer captures and displays the USB packets exchanged with a USB
Flash Drive (www.usbdeveloper.com) .

122

Wireless USB

Wireless extension of USB 2.0 and it operates at
ultra wide band 3.1 GHz to 10.6 GHz
frequencies

For short range personal area network (high

speed 480 Mbps 3 meter or 110 Mbps 10 meter
channel)

FCC has recommend a host wire adapter and a
device wire adapter

Wireless USB also supports dual-role devices

123

Python Interface
e |t treats USB like UART communication:

#!/usr/bin/python
import serial
ser = serial.Serial('/dev/ttypUSBO0', 4800, timeout = 1)

X = ser.read(1200)
print X

124

Questions?

* What's the maximum speed and distance
of USB v2?

 Why USB can send the data in higher
speed and better distance than 1°C?

* What're other advantages/disadvantages
comparing with 1°C?

125

Firewire

t was initiated by Apple Inc.and developed by
EEE 1394 working group

EEE 1394a and IEEE 1394b standard
EEE 1394a is up to 400 Mbps
EEE 1394b is up to 800 Mbps

Serial isochronous transfer or asynchronous
transfer

Transfer data at a guarantee rate

Also used In real-time device and video
conference

126

Firewire application

Multimedia streaming devices

Digita
Digita
Digita

Video cameras
camcorders
Video Disks (DVDs)

Music system multimedia peripherals
Some harddisk drives
Some high-speed printers

127

ISochronous or asynchronous

* |sochronous
— time-critical
— error-tolerant data

e asynchronous
— data isn’t error-tolerant
— not time-critical

128

F
|
rew
Ir
e

| <:::

http://en.wikipedia.org/wiki/File:FireWire_cables.jpg
http://upload.wikimedia.org/wikipedia/commons/c/c5/FireWire-46_Diagram.svg

Firewire interface

« Six pin configuration (Firewire400):
power, ground, two twisted pair sets

* Nine pin configuration (Firewire800):
two additional ground shield

000 How Stuff Waorks

e
10.2 mm 1394 Connector

130

Firewire features

Can interface up to 63 external devices

Support plug and play and hot plugging
Provides self-powered and bus powered support
Twisted pairs

Support multiple-host per bus

131

Daisy Chain configuration

« Can be upto 16 hop
* For Firewire800, up to 400 meter long

Digital External Computer Computer Computer
Camcorder Hard Drive k g 8
Q2000 How Stuff Works

132

Another Firewire connection

E'I!-ll
B3 W =

133

Serial Firewire Bus

FireWire controller in a Computer

Serial FireWire bus

DVD Camcorder Set top box Hard Drives
Processor Processor Processor Processor of
B C D system E

134

Data link layer

135

Firewire protocol layers

Dartvers' DdLA conbroller
Bus management Asynchronows transfers Isocheonows transiers

A 4

o

Link layer
(cycle condral, packet handling)

Hardware

- Phiyebeal lipar
(vl I/F, sb@ration, codec

136

Comparison with USB

» Although USB 2.0 can run at higher rate
than Firewire400, in practice, USB 2.0
rarely exceeds 280 Mbps

* This Is because for USB, host controller
has to manage low-level USB protocol
whereas Firewire delegates the task to the
iInterface hardware

« Simpler bus network

137

USB vs. Firewire

Feature UsB FireWire
1.1 2.0 400 800

Data transfer 12 Mbps 480 Mbps 400 Mbps 800 Mbps

rate

Numberof 5 127 B3 B3

devices

Plug and play |Yes Yes Yes Yes

Hot-pluggable |Yes Yes Yes Yes

Isoc_hronous Yes Yes Yes Yes

devices

Bus power Yes Yes Yes Yes

Bus

termination Mo Mo Mo Mo

required

Bus type Serial Serial Serial Serial
Twisted pair

Twisted pair | Twisted pair | Twisted pair

(4 wires: 2 (4 wires: 2 (B wires: 2 (ED::‘LTSE: 2
Cable type power, 1 power, 1 power, 2 POWET, £
. . . . : . twisted-pair
twisted-pair |twisted-pair |twisted-pair 5
set) set) sets) sets,
graund)
es - fes - fes - Yes -

LA host-based |host-based |peerto-peer |peer-to-peer

Network

Hub Hub Daisy chain | Daisy chain
topology

138

Questions?

What's the maximum speed and distance of
Firewire?

Why Firewire Is faster?

What is the similarity and difference comparing
with USB?

What do you think about USBv3 and Firewirev2?

139

Audio standard

PCM
AC97
MP3
WMA

140

Pulse Code Modulation (PCM)

« PCM iIs an audio format

« PCM is a digital
representation of analog
signal where the
magnitude of the signal
Is sampled regularly by
uniformed interval

141

http://en.wikipedia.org/wiki/File:Pcm.svg

Audio

For PCs, AC 97 Is a common audio
standard

Needs analog signhals so A/D and D/A
hardware Is used inside the Audio IC

Analog mixers can add analog signals
from different sources

Audio driver typically provided with OS

142

MX2A /MX3A

. SPDIF Out SPDIF Output
PCMout wewmwe=a o itrol »
RESET#
PCM out MX04
> _ HeadPhone, & ¥ HP-QUT
PC-BEEP \ | ol No AMP
9 MX0A . Volume =

PHONE IXOC ‘ \

MIC1 o \

MIC2 Vlﬁ +20/30dB MX0E \\ I

- MX20.8 — - -

LINE-IN - . Mo | —e LINE-OUT

& MX10 1] e 3T {gaf) .
'\F:J/' Volume No

CD.IN | :vmiB . — -

p— | MX12 MX22 bt Mono RESET# MONO-OUT
VIDEO-IN o oen | ,
AUXIN L] [Volume |

L MX16 M3209 MX06
stereo mix
mono analog (1) mono mix
— stereo analog 2 phone
mowssss stereo digital & e M Record . PCM in
* - default setting line U — oy T ADC SRC keeceeme===
CD X
video MX1C
aux
MXI1A

Figure 3.9 Realtek ALC202 AC97 Device Block Diagram

143

Pulse Width Modulation (PWM)

« PWM Is a way for controlling analog
circuits with digital output

* By controlling analog circuit digitally,
system cost and power consumption can
be reduced

 Used in audio, motor control,
telecommunication

* The duty cycle Is the proportional of the on
time to the regular interval or period

144

PWM with 10%, 50%, and 90%
duty cycle

Om = High Level Off = Low Level

145

PWM Signal

146

CAN and LIN Bus

Serial Buses Developed for Automotive Industry
In mid 1980s — More advanced than RS232
Serial

CAN is used to connect car subsystem
processors together, has multiple bus masters, &
uses 2 wires

LIN is used to connect a processor with it's
smart sensors, a single master, & uses only 1
wire

LIN used at lower levels along with CAN at
higher levels in the system

Both are now found in other embedded devices

147

CAN bus

Two wires, half duplex, high-speed network
system

Can link up to 2032 devices

Up to 1 Mbps thus facilitates real-time control
Sophisticated error detection features

CAN 2.0 A uses 11 bit identifiers

CAN 2.0 B uses 29 bit identifiers

ECU = Engine Control Unit

148

Car Body Network with CAN & LIN

—IMirror
@E g@b —
ocl
Lock _@ _ICDI Window Lift
Universal Light
CAN \ Light
X il
@@ @@ Seat
Instruments .
. Wiper
Power Train «=—— central | _ WHtg
Body Ctrl Roof X X rl‘_ti%rr'](t)r . l
Trunk[]
Climate Hing
X6 ——
eal
X ‘ Light Seat
X
St-Wheel Panel (§} §& CAN —j_
—(: >| >Universal Motor
1 backbone, 13 nodes (5] @
8 subnets, 1-8 local nodes upb-Bus LE _q@\Universal Panel
52 nodes total Mirron

149

Controller Area Network (CAN)

Messages contain a message number and
not an address

Lower number messages have priority

Each devices checks the message
number to see If it needs to handle the
message

Data rates up to 1M Baud
Special CAN chips are available

150

CAN 2.0 A message format

I MESSAGE FRAME

|
Idle 1 Arbitration Field | Control | Diata Field CRC Field ACK EOF
q—ni |< r|= p|= > 4—>|4—+

11-bit Identifie

P

b

i Sy 1

Imtr .| Idle

DLC | Data (0-8) Bytes | 15 bits

T

slot

delimiter delimiter

151

CAN 2.0 B message format

I MESSAGE FRAME o |

| |
Idle L Arbitration Field | Control | Data Field CRC Field | ACK EOQF Intr Idle
BN A e o RO e ACK | FOFL I) 1,

.11-hit Identifier 18-bit Identifie DLC IData (0-8) Ey‘tes|15 hits-:-:

| I T

SOF SRR RTR | r1 slot
IDE

delimiter delimiter

r0 - - m—— .-

152

CAN controller topology

153

Advantages of CAN bus

Protocol is highly reliable and error
resistant

World-wide accept standard
Multi-master topology
Sophisticated error detection

Short latency time for high priority
messages (real-time systems)

154

Local Interconnect Network (LIN)

« Can be implemented with a UART and
microcontroller firmware

» Data rates up to 20K Baud
* Only one bus master

 Lower cost, lower data rates, and 1 less
wire than CAN

155

Message Frame

I
) -
; I
; Header Response I
< >, [>,
| | | « :
)]
Sync Sync Ident Data Data Data Data Check-
Break Field Field Field Field Field Field Sum
Field | Interfram
((
_) Space or
\ Interbyte Space E reak

In Frame Response Space

Figure 3.16 A Typical LIN Frame Consisting of Synch Break, Synch Field, Identifier, Data Field and

Checksum.

156

EE' SP1 Decoder

File Configure Control Help

Prodigy Test Solutions

Stop ~ LIConnection

SRno Start MOZI0ata MIS0Data Time3tamp
pe) [t (A48 [aEA8) L N0 | B b P ™=
4 MA 0x0 0x52 -00004512 1
] 1 Oxad 0w -0000321 [REY
] MA 0x0 0x80 -00003m T4,
T MA 0x0 Oxd -00o002 P4,
g MA 0x0 01 -0 000261 1
g 1 Oxad 00 -0000128 T4,
10 MA 080 00 -0000108 T4,
ih MA 0x0 O=d -00o0ose T,
12 MA 0x0 01 -0000o087 1
1 Oxad =0 0.000073 [,

Source
File ~

Channel
SPICS

o]

SPI Clock

v [clockesv|..]

MOSIData

postoee_ .

MIS0Data

0.

RunControl

Figure 3.13 The Tektronix DPO7000 1-4 Channel Oscilloscope is an embedded device that runs
Windows XP. The display above is from an optional software package for the oscilloscope that

decodes and displays SPI bus signals. Images courtesy of Prodigy Test Solutions.

B 12C Decoder,
File Configure Display Control Help

Prodigy Test Solutions

START ADDRESS DATA, Ry ACK STOF
1 Q167 A 1] 1]
1] P&, OxCE 1 1
1 167 A 1] 1]
1] A 0xCE 1 1
1 167 A 0 1] 1]
1] A xCE MA, 1 1

>

File hd

Channel

SDA Clock

Clk_1.cov .

SDA Data

CIREY.

RunControl

SingleShot

o

Figure 3.14 The Tektronix DPO7000 1-4 Channel Oscilloscope is an embedded device that runs
Windows XP. The display above is from an optional software package for the oscilloscope that
decodes and displays 1°C bus signals. Images courtesy of Prodigy Test Solutions.

158

Questions?

159

