

GPU

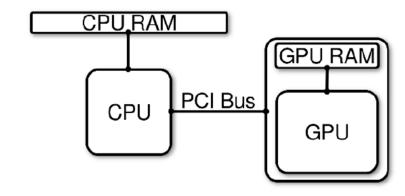
Topics

- GPU hardware and its components
- Theoretical performance
- Actual performance measurement
- Application models

Integrated GPUs

A graphics processor engine that is contained on the CPU

Dedicated GPUS
 A GPU on a separated peripheral card



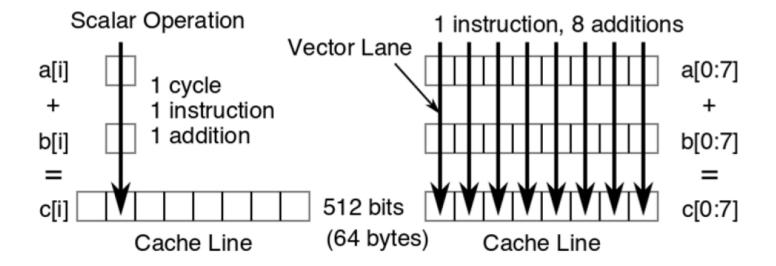
Dedicated GPU Hardware

- Block diagram of GPU accelerated model
 - CPU
 - CPU Ram
 - GPU
 - GPU Ram
 - PCI Bus

SIMD and Thread engine

Single Instruction Multiple Data (SIMD)

- Thread engine
 - Large number of threads
 - Zero switching time
 - Latency hiding



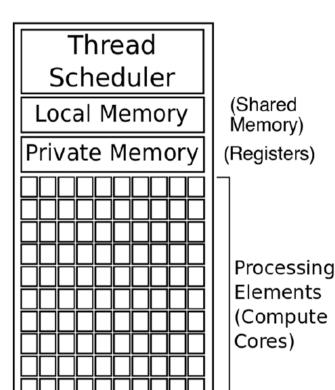
SIMD Architecture

Host	OpenCL	AMD GPU	Nvidia/CUDA	Intel Gen11
СРИ	Compute device	GPU	GPU	GPU
Multiprocessor	Compute Unit (CU)	Compute Unit (CU)	Streaming Multiprocessor (SM)	Subslice
Processing Core or Core for short	Processing Element (PE)	Processing Element (PE)	Compute Cores or CUDA Cores	Execution Units (EU)
Thread	Work Item	Work Item	Thread	
Vector or SIMD	Vector	Vector	Emulated with SIMT Warp	SIMD



Computing Unit

- It is term agreed by OpenCL standard
- Nvidia calls it Streaming multi processors(SMs)



Block diagram of a Computing Unit

- Each compute unit contains multiple Processing Elements (PEs)
- Each PE, it is composed of many functional units
 Referred to as SIMT, SIMD, or Vector operations by ganging processing elements together.

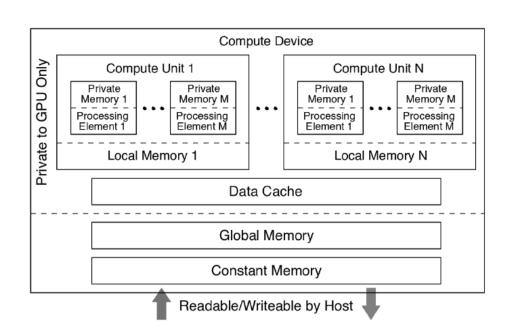
GPU	Nvidia V100 (Volta)	Nvidia A100 (Ampere)	AMD Vega 20 (MI50)	Intel Gen11 Integrated
Compute Units	80	108	60	8
FP32 Cores/CU	64	64	64	64
FP64 Cores/CU	32	32	32	
GPU Clock Nominal/Boost	1290/1530 MHz	?/1410 MHz	1200/1746 MHz	400/1000 MHz
Subgroup or warp size	32	32	64	
Memory clock	876 MHz	1215 MHz	1000 MHz	shared memory
Memory type	HBM2(32 GB)	HBM2(40 GB)	НВМ2	LPDDR4X-3733
Memory data width	4096 bits	5120 bits	4096 bits	384 bits
Memory bus	NVLink or PCIe 3.0x16	NVLink or PCIe Gen 4	Infinity Fabric or PCIe 4.0x16	shared memory
Design Power	300 watts	400 watts	300 watts	28 watts

Theoretical Peak Flops

Peak Theoretical Flops (GFlops/s) =Clock rate MHz×Compute Units×Processing units ×Flops/cycle

- Nvidia v100: Single precision
 - $2 \times 1530 \times 80 \times 64 / 10^6 = 15.6 \text{ TFlops}$
- Nvidia v100: Double precision
 - $2 \times 1530 \times 80 \times 32 / 10^6 = 7.8 \text{ Tflops}$
- AMD Vega 20: Single precision
 - $2 \times 1746 \times 60 \times 64 / 10^6 = 13.4 \text{ TFlops}$
- AMD Vega 20: Double precision
 - $2 \times 1746 \times 60 \times 32 / 10^6 = 6.7 \text{ Tflops}$

Fused Multiply and Add (=2 operations)



GPU Memory space

- Register memory (private memory)
- Local memory
- Constant memory
- Global memory

Calculating Peak Memory Bandwidth

Graphics Memory Type	Memory Clock (MHz)	Memory Transactions (GT/s)	Memory Bus Width (bits)	Transaction Multiplier	Theoretical Bandwidth (GB/s)
GDDR3	1000	2.0	256	2	64
GDDR4	1126	2.2	256	2	70
GDDR5	2000	8.0	256	4	256
GDDR5X	1375	11.0	384	8	528
GDDR6	2000	16.0	384	8	768
НВМ1	500	1000.0	4096	2	512
HBM2	1000	2000	4096	2	1000

Theoretical memory bandwidth calculation

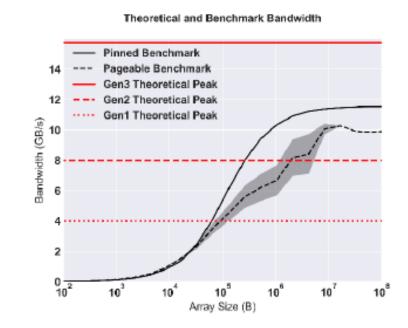
Theoretical bandwidth = Memory clock rate (GHz)
* Memory bus (bits) * (1 byte/8bits) * transaction
multiplier

Theoretical bandwidth = Memory Transaction rate (GHz) * Memory bus (bits) * (1 byte/8bits)

Theoretical memory bandwidth

Nvidia V100

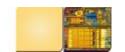
AMD Radeon Vega20

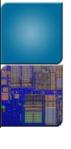


Pinned / Pageable Memory

Pinned memory:
memory that cannot be
page-out from ram and
thus can be directly sent
to the GPU

Pageable memory: shared memory that can be paged-out to disk




CPU to GPU Data transfer overhead

 The current version of the PCI bus is called PCI Express (PCIe)

 It has been revised from "generations" from 1.0 to 6.0

Theoretical bandwidth of the PCI bus

Theoretical Bandwidth (GB/s) = lanes x Transfer rate GT/s x Overhead factor (GB/GT) x byte/8bits

Command to check PCIe information

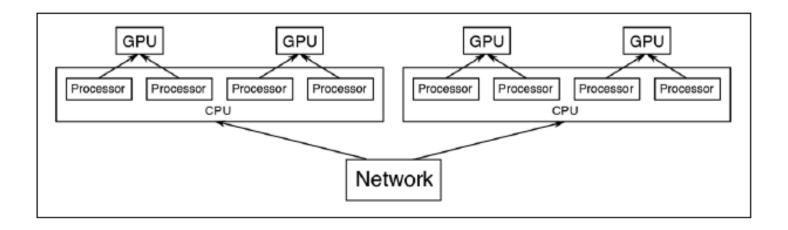
\$ lspci -vmm | grep "PCI bridge" -A2

Class: PCI bridge

Vendor: Intel Corporation

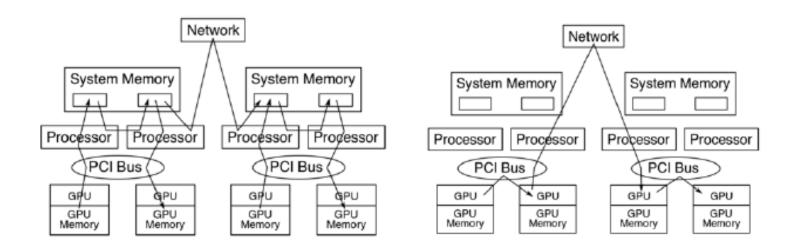
Device: Sky Lake PCIe Controller (x16)

PCIe Generation	Maximum Transfer Rate (bi-directional)	Encoding Overhead	Overhead factor (100%-encoding overhead)	Theoretical Bandwidth 16 lanes - GB/s
Gen1	2.5 GT/s	20%	80%	4
Gen2	5.0 GT/s	20%	80%	8
Gen3	8.0 GT/s	1.54%	98.46%	15.75
Gen4	16.0 GT/s	1.54%	98.46%	31.5
Gen5 (2019)	32.0 GT/s	1.54%	98.46%	63
Gen6 (2021)	64.0 GT/s	1.54%	98.46%	126



Multi-GPU Platform

 To further improve performance of the system, multi-GPU are sometimes used together



GPU Direct

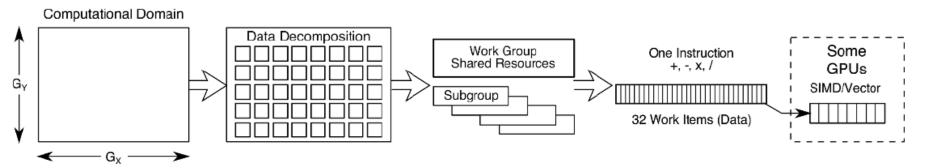
- CUDA adds the capability for the GPU to send data in a message
- AMD has a similar capability called DirectGMA

The estimation of Energy consumption

 $Energy = (N Processors) \times (R Watts/Processor) \times (T hours)$

Example of energy calculation

	Nvidia V100	Intel CPU Skylake Gold 6152
Number	12 GPUs	45 processors (CPUs)
Bandwidth	12 x 850 GB/s = 10.2 TB/s	45 x 224 GB/s = 10.1 TB/s
Cost	12 x \$11,000 = \$132,000	45 x \$3,800 = \$171,000
Power	300 watt per GPU	140 watt per CPU
Energy for 1 day	86.4 kW-hrs	151.2 kw-hrs



GPU Programming Model

Programming model

- Data decomposition
- Chunk-sized work for processing with some shared, local memory
- Operating on multiple data items with a single instruction
- Vectorization (on some GPUs)

Programming abstractions

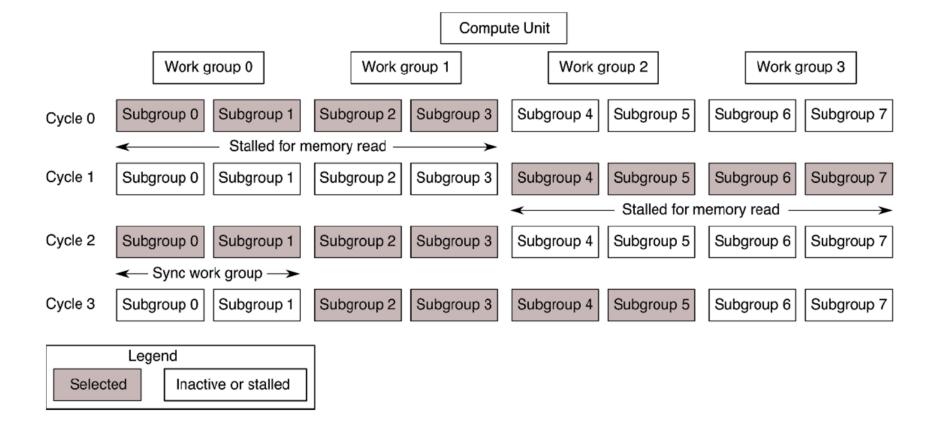
OpenCL	CUDA	HIP	AMD GPU (HC Compiler)	C++ AMP	CPU
NDRange (N- Dimensional range)	grid	grid	extent	extent	Standard loop bounds or index sets with loop blocking
work group	block or thread-block	block	tile	tile	loop block
subgroup or wavefront	warp	warp	wavefront	N/A	SIMD length
work item	thread	thread	thread	thread	thread

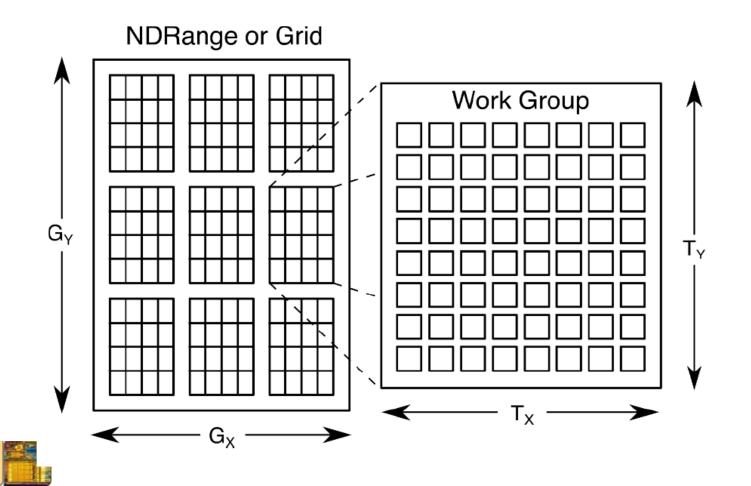
Work model

From the task, it can be broken down into workgroup.

Each workgroup will be composed of multiple subgroups or wavefronts

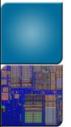
Each subgroup is composed of multiple work item





	Nvidia Volta and Ampere	AMD MI50
Active number of subgroups per compute unit	64	40
Active number of work groups per compute unit	32	40
Selected subgroups for execution per compute unit	4	4
Subgroup (warp or wavefront) size	32	64

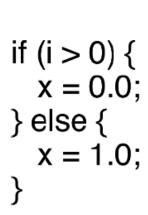
Example Suppose we have data decomposition of a 1024 x 1024

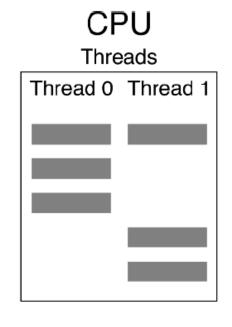


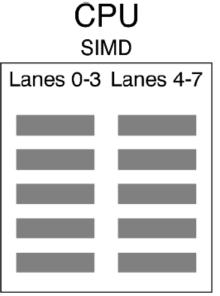
	1D	small 2D
Global size	1,048,576	1024 x 1024
T _z x T _y x T _x	128	8 x 8
Tile size	128	64
NT _z x NT _y x NT _x	8192	128 x 128
NT (number of work groups)	8192	16,384

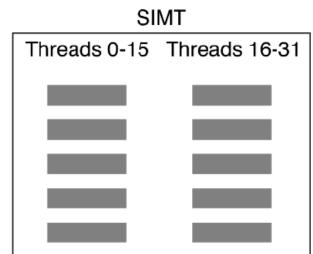
Workgroup and subgroup

Characteristics of work groups on GPUs are:

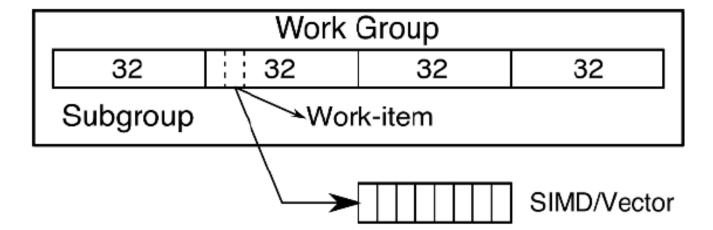

- Cycles through processing each subgroup
- Has local memory and other resources shared within the group
- Can synchronize within a work group or a subgroup


Work Group	Each subgroup (warp) is 32 w This work group size is 128, b	
	Work Group)
	32 32 3	2 32
	Subgroup *Work-item	
	→ Work-item	





GPU



Loop and Kernel Code

CPU code vs. GPU code

```
CPU Loop

// stream triad loop
index set

size_t gid = get_global_id(0);

for (int i=0; i<stream array size; i++);

c[i] = a[i] + scalar*b[i];

loop body

c[gid] = a[gid] + scalar*b[gid];
```